
1 OR-Mapper

• Eager Loading default bei OneToOne und ManyToOne
• Lazy Loading default bei OneToMany und ManyToMany
• EntityManager.persist(), EntityManager.remove() bei je-

dem Element, da nicht transitiv. Implizit bedeutet,
dass em.remove() dann alle referenzierten Änderun-
gen löscht. Kaskade bei Relation angeben, damit impliz-
it: @OneToMany(cascade = CascadeType.PERSIST, Cas-
cadeType.Remove, …)

• cascade mit Persist ist Aggregation und mit Remove
dann sogar Komposition.

• Java Persistence Querying ist wie SQL aber auf Entity-
Modell nicht Db Modell.

• JPQL Named/Positional-Query Parameters werden via
Funktion gesetzt ohne SQL-Injektion. Dynamic Querys,
können zu Injektion führen. Werden beide zur Laufzeit
geprüft. @NamedQuery können sogar statisch geprüft
und vom JPA-Provider voroptimiert werden.

• Criteria API kann zur Compile-Zeit geprüftwerden. Ohne
SQL Injection.

EntityManagerFactory factory =
Persistence.createEntityManagerFactory("Bank");
EntityManager em = factory.createEntityManager();
Query query = em.createQuery("SELECT a from
BankCustomer c join c.accounts a");
Query query = em.createQuery("SELECT distinct a.id,
a.balance from BankAccount a order by a.balance desc");

Query query = em.createQuery("SELECT a from BankAccount
a where a.balance >= 0 and a.balance <= :upper");
query.setParameter("upper", 2000); List<BankAccount>
list = query.getResultList();

Query query = em.createQuery("select m from BankManager
m where 'Bob' in (select c.name from m.customers c)");
Query query = em.createQuery("select c from
BankCustomer c where c.BankAccount.accountid =
'0654321'");

Query query =
em.createNamedQuery("FindPrivateBankCustomers
OlderThanEqual");
query.setParameter(1, new
Date(thirtyYearsAgo.getTimeInMillis()));
List<PrivateBankCustomer> customers =
query.getResultList();

List<BankAccount> list = query.getResultList(); for
(BankAccount account : list) {
System.out.println(account); }

CriteriaBuilder criteriaBuilder =
entityManager.getCriteriaBuilder();
// Query for a List of objects.
CriteriaQuery criteriaQuery =
criteriaBuilder.createQuery();
Root employee = criteriaQuery.from(Employee.class);
criteriaQuery.where(criteriaBuilder.greaterThan(
employee.get("salary"), 100000));
Query query = entityManager.createQuery(criteriaQuery);
List<Employee> result = query.getResultList();

em.getTransaction().begin();
BankCustomer customer = new BankCustomer();
customer.setName("Bill"); em.persist(customer);
em.getTransaction().commit();

//update
BankCustomer customer = new BankCustomer();
customer.setName("Bill"); em.persist(customer);

//delete
EntityManager em = factory.createEntityManager();
em.getTransaction().begin();
BankAccount account = em.find(BankAccount.class, 1L);
em.remove(account);
em.getTransaction().commit();
em.close();

--Gegen Dirty Reads und Lost Updates, PESSIMISTIC_READ
em.lock(from, LockModeType.PESSIMISTIC_WRITE);
em.lock(to, LockModeType.PESSIMISTIC_WRITE);

@Entity //sagt, dass man die Klasse speichern kann. Ist
der Name, bei JPA-Query
@Table(name = "bankcustomer")
@NamedQuery(name="FindPrivateBankCustomersOlder

ThanEqual", query="SELECT c FROM BankCustomer c WHERE
c.birthdate <= ?1 ORDER BY c.name")

public class BankCustomer {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
//entspricht dem serial auf der Db, sonst auto also
globale Id
/* Alternative
Entsp. einer sep. Tabelle mit KeyName, KeyValue mit
Namen KeyTable
@GeneratedValue(strategy = GenerationType.TABLE,
generator ="CustomerGen")
@TableGenerator(name ="CustomerGen", table ="KeyTable",
pkColumnName ="KeyName", valueColumnName ="KeyValue",
pkColumnValue ="CustomerKey")

@GeneratedValue(strategy = GenerationType.SEQUENCE,
generator = "BankCustGen")
@SequenceGenerator(name = "BankCustGen", sequenceName =
"CustomerIdSeq",allocationSize=1) //die 2 Zeilen
entsp. Create Sequence cutomeridseq; auf Db.
@Column(name="accountid") //auch unique=true,
nullable=true, length=200 als parameter moeglich, name
implizit propertyname
*/
private long customerId;

public void setCustomer(BankCustomer newCustomer) {
BankCustomer oldCustomer = this.customer;
this.customer = newCustomer;
if (newCustomer != null &&
!newCustomer.containsAccount(this)) {
newCustomer.addAccount(this);

}
if (oldCustomer != null &&
oldCustomer.containsAccount(this)) {
oldCustomer.removeAccount(this);

}}}

@Entity
@Table(name="PET_INFO")
public class Pet {

@Temporal(TemporalType.TIMESTAMP)
private Calendar birthdate;

@Transient
private String notSaved;

@Enumerated(EnumType.STRING)
private PetType type;

@ManyToMany(cascade = { CascadeType.PERSIST,
CascadeType.MERGE,
CascadeType.REMOVE, CascadeType.ALL
},
fetch = FetchType.LAZY

)
@JoinTable(name = "post_tag",

joinColumns = {@JoinColumn(name = "post_id")},
//JoinColumn "referencedColumnName" ist impl. PK
//auch kommasepariert mehrere möglich
inverseJoinColumns = {@JoinColumn(name = "tag_id")}

)
private List<Tag> tags = new ArrayList<>();

//Seite 1:
@ManyToOne(optional = false, fetch = FetchType.EAGER)
@JoinColumn(name="OWNER_ID")
//optional nur für OneToOne und ManyToOne, da ansonsten
List einfach leer.
Owner owner;

//Seite 2:
@OneToMany(mappedBy="owner")
private List<Pet> pets;

@OneToMany //Gegenseite dann @ManyToOne
@JoinColumn(mappedBy="friends")
@JoinColumn(name = "addressid",
referencedColumnName = "addressref", //Wenn nicht PK
von Pet
insertable = false, updatable = false)
private List<Pet> friends = new ArrayList<>();

1.1 Vererbung Single-Table, Joined-Table, Table-Per-Class

Ergibt eine Tabelle mit Spalte type und Inhalt aller Klassen

@Entity @Inheritance(strategy =
InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type")

public abstract class BankCustomer { @Id private String
name;}

@Entity @DiscriminatorValue("Retail")
public class RetailBankCustomer extends BankCustomer {
private int fees; }

Ergibt separate Tabellen für alle Klassen. Abstracte Klasse/Tabelle
hat nur cutomerid, type, name.

//RetailBankCustomer dann auch customerId und fees
@Entity @Inheritance(strategy = InheritanceType.JOINED)
@DiscriminatorColumn(name = "type")

public abstract class BankCustomer { @Id private int
customerId; private String name;}

@Entity @DiscriminatorValue("Retail") public class
RetailBankCustomer extends BankCustomer { private int
fees;}

Tabellemit Namenwie konkrete Klasse inkl. Properties von abstrak-
ter Klasse.

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract ...

2 Postgresql Functions

Programme ’gespeichert’ (stored) bei oder nahe denDaten. Kapselt
Domain Logik, Datenkapselung. Performance. Wiederverwend-
barkeit, Feineres Berechtigungsmanagement, haben eigens Recht
für Ausführung, Logging möglich. Nachteil Wartbarkeit, Portier-
barkeit, ev. genügen Views.

Bei PL/SQL: Prozedurale Sprachelemente mit deklarativem SQL
mischen. PL/SQL (Oracle) sind Keywords und Variablen case-
insensitiv; nahe SQL/PLM

PL/pgSQL (postgres): case-sensitiv, nahe SQL/PLM, moderner.
Code wird bei Aufruf geparsed, Pseudocode in Db gespeichert,
erst bei Ausführung voller Syntax Check, SQL Statements werden
vorkompiliert und wiederverwendet. Nur functions mit out modifi-
er und void Datentyp. Schema anstelle packages.

create [or replace] function
name ([[IN | OUT] [argname] argtype [,...]])
[RETURNS rettype
--kann z.B. void, int, bigint, text, bool, int[].
--setof int dann return next ...; und am Schluss return
;.
--wenn OUT vorhanden returns weg lassen.
| RETURNS TABLE (colname coltype
[,...])]
AS $$
-- ... Source Code gemaess language
$$ language [plpgsql|SQL|...]

CREATE OR REPLACE FUNCTION get_AbtMA (nr integer)
RETURNS TABLE (
abtname VARCHAR,
abtMA VARCHAR
)

AS $$
BEGIN
RETURN QUERY
SELECT abt.name, ang.name FROM abteilung abt
join angestellter ang on ang.abtnr=abt.abtnr
where abt.abtnr=nr
order by abt.name, ang.name;

END; $$
LANGUAGE plpgsql;

select * from get_AbtMA(2);

create or replace function id_as_text (abc personen) --
personen ist eine Tabelle und Zugriff via abc.Id usw.

DECLARE
var1 int := 0; --nur dann var1 := var1 + 1 möglich!!!
var2 int not null; var5 angestellter.id%type; -- Spalte
Id

var6 angestellter%rowtyp; var7 record;

BEGIN
BEGIN
SELECT .. INTO STRICT var1 FROM tbl --muss genau ein
Tupel

EXCEPTION
WHEN division_by_zero THEN z:= 0;
WHEN NO_DATA_FOUND THEN z := 0; --Bei SELECT INTO
STRICT

WHEN TOO_MANY_ROWS THEN z := 0; --Bei SELECT INTO
STRICT

WHEN UNIQUE_VIOLATION THEN z := 0; --Bei INSERT,
UPDATE wegen PK Violation

WHEN FOREIGN_KEY_VIOLATION THEN z:=0; --Bei INSERT,
UPDATE wegen Foreign-Key Violation

END; --Oder OTHERS. Falls Fehler sprung zu Exception
und dann weiter nach End.

IF NOT EXISTS (SELECT 1 FROM angestellter WHERE persnr =
anr) THEN
RAISE EXCEPTION 'ang not exist';

END IF;

UPDATE Angestellter SET Salaer = Salaer + SalIncr WHERE
Name = AngName;
IF NOT FOUND THEN --FOUND wird bei UPDATE, DELETE true/
false wenn Tuppel bearbeitet

ELSE RAISE NOTICE 'name ist: %', name; --RAISE NOTICE
macht ein Logeintrag, RAISE EXCEPTION bricht ab.

END IF;

INSERT INTO films (code, title, did, date_prod, kind)
VALUES

('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy')
;

END;

3 Funktionen

Erlauben komplexe Berechnung nur mit einem Aufruf. Separate
Berechtigungen. Können vorkompiliert werden.

string || string/number -- String concat, oder array
concat

upper(string), lower(string --upper/lower-case
substring(string [from int] [for int]) -- substring('
Thomas' from 2 for 3) = hom

substr('alphabet', 3, 2) = ph
length(string) --Numbers of chars
now() --Date typ
mod(int, int) --Modulo
coalesce (SalaerSumme ,0) --NULL ersetzen

4 Loops/Condition

IF (SalIncr < 0 OR SalIncr > 2000 OR X IS NULL) THEN
... END IF;
IF expression THEN statements ELSIF other-expression
THEN statements ELSE statements END IF;
FOR i in 1..10 LOOP ... END LOOP;
FOR record-var IN query LOOP return next record-var; END
LOOP; return; --record-var must be declared as record
or %rowtyp return next adds result row and return;
finish
--EXIT, CONTINUE möglich aber auch z.B. EXIT WHEN y >
4000000;
FOR i IN 1 .. array_upper(a, 1) LOOP ... END LOOP; --
Loop array a
WHILE i < 100 AND b > 1 LOOP ... END LOOP;
FOREACH i IN ARRAY a LOOP ... END LOOP;

5 Array

Array Index fängt immer bei 1 an. Mit 2:3 dann 2. + 3. Zeile.

unnest(anyarray) --Macht aus array row für loop
array_ndims(anyarray) oder array_dims(anyarray) --
Dimension in int oder text
array_length(anyarray, int) --Länge von array, der
dimension int
array_prepend(anyelement, anyarray) oder array_append(
anyarray, anyelement)
array_to_string(anyarray, text [, text]) -- array,
delimi, null string
new_arr := array_append(new_arr, 4) oder arr[i] := 1;

SELECT (array[1,2,3,4,5,6])[2:5] dann {2,3,4,5} --Slice
Query, fängt bei 1 an.

INSERT INTO sal_emp VALUES ('Bill', ARRAY[10000, 10000],
ARRAY[['meeting', 'lunch'],['train', 'present']]

INSERT INTO geometries VALUES (4, 'Line B', ARRAY[ARRAY
[6,2],ARRAY[5,5]]); --ist dann {{6,2},{5,5}}

SELECT ARRAY(SELECT 1 + (random()*5)::int FROM
generate_series(1,6) ORDER BY 1); --{1,3,5,5,6,6}

SELECT ARRAY[1.1,2.1,3.1]::int[] = ARRAY[1,2,3] --true
SELECT ARRAY[2,7] <@ ARRAY[1,7,4,2,6]; -- true is
contained by

SELECT ARRAY[1,4,3] && ARRAY[2,1] --true, @> bed.
contains und && bed. overlap und = bed. equal

select * from tictactoe where 'z2 k2' = any(board); --
Wenn ein Element vorhanden ist.

select ARRAY (select 1 + (random()*5)::int FROM
generate_series(1,6));

SELECT * FROM planet_osm_point WHERE tags ? 'parking';
--Alle Zeilen die den Schlüssel parking enthalten.

Geht nicht '{{"infsys", "dbs1"}, {"prog2", "dbs2", "vss
"}}', weil nicht gleiche Dimension

select
ang.persnr,
min(ang.name),
array_agg(trim(proj.bezeichnung)) --Macht array
from angestellter ang
left outer join projektzuteilung pz on ang.persnr=pz.
persnr

left outer join projekt proj on pz.projnr=proj.projnr
group by ang.persnr
order by ang.persnr;

6 Dictionary(hstore)

CREATE TABLE kvp_table(id serial, kvp hstore);
SELECT 'a=>1,a=>2'::hstore;
SELECT hstore(t) FROM test AS t; --Spalten sind jeweils
key

SELECT akeys(mykvpfield) FROM ... --Alle Keys in einem
array

SELECT each(mykvpfield) FROM ... --Alle Key-Value-Pairs
als einzelne set

SELECT (each(h)).key, (each(h)).value INTO stat FROM
testhstore;

SELECT mykvpfield->'name' FROM ... --Get Value of Key '
name' as text

WHERE mykvpfield @> 'tourism=>zoo'; -- or hstore('
tourism', 'zoo') - Vergleicht zwei hstore ob left is
contained in right
hstore_to_array(tags)

7 JSON

JSON ist text in Db, also immer reparsen. JSONB ist gepartes Binär-
format. Input lansamer, schneller Index.

'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json->2 ergibt
{"c":"baz"} start bei 0, negativ von Ende. Also json
object
'{"a":1,"b":2}'::json->>'b' ergibt 2 als text
'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb Does the
left JSON value contain the right JSON path/value
entries at the top level?
'{"a":1, "b":2}'::jsonb ? 'b' - Does the string exist as
a top-level key within the JSON value?

'{"a": {"b":{"c": "foo"}}}'::json#>'{a,b}' Get JSON
object at specified path = {"c": "foo"} oder mit #>> as
text

to_json(anyelement) to_json('Fred said "Hi."'::text)
to_jsonb(anyelement) to_jsonb('Fred said "Hi."'::text)
row_to_json(record [, pretty_bool])
jsonb_each(jsonb) - select * from json_each('{"a":"foo",
"b":"bar"}') ergibt spalte key, value

'{"a": {"b":"foo"}}'::json->'a' --gets json object by
key 'a' = {"b":"foo"}
'{"a":1,"b":2}'::json->>'b' --gets text by key 'b' = 2
'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb --Does the
left JSON value contain the right JSON path/value
entries at the top level?
'{"a":1, "b":2}'::jsonb ? 'b' --true or false - check
string exist as a top-level key within column?
'["a", "b"]'::jsonb || '["c", "d"]'::jsonb --concat two
jsonb value
'{"a": "b"}'::jsonb - 'a' --Delete key/value pair or
string

1

where angwithproj->>'persnr' = 1001::text;
where (angwithproj->>'name') like 'Marxer%'
where angwithproj->'projects' @> to_jsonb('Uranus'::text
)

from angprojj, jsonb_array_elements_text(angwithproj->'
projects');

cross join lateral jsonb_array_elements_text(angwithproj
->'projects');

select
jsonb_build_object(
'persnr', ang.persnr,
'name', min(ang.name),
'projects', jsonb_agg(trim(proj.bezeichnung))
) as objects
from angestellter ang
left outer join projektzuteilung pz on ang.persnr=pz.
persnr

left outer join projekt proj on pz.projnr=proj.projnr
group by ang.persnr
order by ang.persnr;

ergibt {"name": "Marxer, Markus", "persnr": 1001, "
projects": ["Mars", "Uranus", "Jupiter"]} wie unten

select jsonb_pretty(jsonb_agg(tmp))
from (

select
ang.persnr as persnr,
min(ang.name) as name,
jsonb_agg(trim(proj.bezeichnung)) as projects
from angestellter ang
left outer join projektzuteilung pz on ang.persnr=pz.
persnr

left outer join projekt proj on pz.projnr=proj.projnr
group by ang.persnr
order by ang.persnr

) tmp;

--Fügen Sie ein outer-level Tag „“carrier_hub mit dem
Wert „“Swiss (in einem Array, damit weitere
Fluggesellschaften hinzugefügt werden können.

UPDATE airports
SET airport = airport || '{"carrier_hub": ["Swiss"]}'
MUSTERLÖSUNG
WHERE airport ->> 'ident' IN (
'LSZH', -- Zürich Airport
'KMDW', -- Chicago Midway
'KLAS', -- Las Vegas
'KDAL'); -- Love Field, Dallas;

--Fügen Sie dem Flughafen Zürich Edelweiss zu
carrier_hub hinzu (jsonb_set).

UPDATE airports
SET airport = JSONB_SET(
airport,
'{carrier_hub}',
(SELECT (airport -> 'carrier_hub') || TO_JSONB('
Edelweiss'::TEXT)

FROM airports WHERE airport ->> 'ident' = 'LSZH'),
false)
WHERE airport ->> 'ident' = 'LSZH';

--ergibt ["Swiss", "Edelweiss"]

--entfernt ...wikipedia vom airport
UPDATE airports
SET airport = (airport - 'airport_wikipedia' - '
region_wikipedia');

8 XML

Postgresql kann nur XPATH,Oracle,MS Server auchXQuery. XQuery
ist XPATH + SQL-Like Syntax für joins, wie for, let, where, order by,
return.

XNODE(XMLPARSE(DOCUMENT ’ < unit >value </ unit > ’)) ;
XMLPARSE(DOCUMENT ’ < unit >value </ unit > ’)) ;
XPATH(’ fn : name (/ *)

9 Table

TRUNCATE table1; --löscht Inhalt von der Table
SET CONSTRAINTS ALL DEFERRED; führt dazu, dass die
Constraints für die aktuelle Transaktion nicht geprüft
werden.

10 Cursor

Cursor erlaubt den sequentiellen Zugriff auf die einzelnen Tuples
des Result Set. Handle or name for a ’private SQL area’ - an area in
memory inside DB server.

DECLARE
AngRec RECORD;
curs1 REFCURSOR; -- unbound
curs2 CURSOR FOR select * from abteilung;
curs3 CURSOR (id integer) for select * from abteilung
where abtnr = id;
AngCursor CURSOR FOR select * from b FOR UPDATE;
id int := 1;
rowvar abteilung%rowtyp;
name text;
BEGIN
-- open
open curs1 for execute 'select * from abteilung where
abtnr = $1' using id;
OPEN curs1 FOR select * from angestellter ang where ang.
AbtNr = Abteilungsnummer;
open curs2;
open curs3(2);

OPEN AngCursor; /*SQL-Abfrage starten und Resultat in
Puffer speichern*/
LOOP /*Iteration ueber Resulatmenge*/
FETCH AngCursor INTO AngSalaer, AngPersNr;
--oder FETCH AngCursor INTO AngRec;
EXIT WHEN NOT FOUND;
SalSumme := SalSumme + AngSalaer;
RAISE notice 'Angstellter PersNr: % Salaer %',
AngPersNr, AngSalaer;

END LOOP;

OPEN AngCursor;
LOOP
FETCH AngCursor INTO AngRec; --aktuelles Tupel wird
gesperrt.
EXIT WHEN NOT FOUND;
UPDATE Angestellter SET Salaer = MinSalaer
WHERE CURRENT OF AngCursor;

END LOOP;

CLOSE AngCursor;
CLOSE curs1; close curs2; close curs3;
END;
$$ language plpgsql;

11 Trigger

Für Implementation von komplexen Konsistenzbedingungen.
Berechnung abgeleiteten Attributen, Logdaten und für Updateable
Views.

INSTEAD OF trigger should either return NULL to indicate that it
did not modify any data from the view’s underlying base tables, or
it should return the view row that was passed in (the NEW row for
INSERT and UPDATE operations, or the OLD row for DELETE opera-
tions)

A row-level trigger fired before an operation has the following
choices: it can returnNULL to skip the operation for the current row.
For row-level INSERT and UPDATE triggers only, the returned row
becomes the row that will be inserted or will replace the row being
updated.

The return value is ignored for row-level triggers fired after an op-
eration, and so they can return NULL.

For a row-level trigger, the input data also includes theNEW row for
INSERT and UPDATE triggers, and/or the OLD row for UPDATE and
DELETE triggers.

CREATE TRIGGER mytrigger
{BEFORE | AFTER | INSTEAD OF} {event [OR ...]} --event=
INSERT,UPDATE,DELETE, INSTEAD OF nur für Views
FOR EACH {ROW | STATEMENT}
EXECUTE PROCEDURE mytriggerfun();

CREATE OR REPLACE FUNCTION dt_trigger_func()
RETURNS TRIGGER AS $$
BEGIN
--Bei Update oder Delete auch OLD verfuegbar.
IF (TG_OP = 'INSERT') THEN
NEW.creation_date := now();
ELSIF (TG_OP = 'UPDATE') THEN
NEW.modification_date := now();

END IF;
--INSERT INTO ang_audit SELECT 'U', now(), user, NEW.

name, NEW.salaer;
coalesce (SalaerSumme ,0) + v_salaer --wegen NULL + 1 =
NULL

RETURN NEW; --wenn return null dann nichts eingefügt.
Bei delete old zurück.

END
$$ LANGUAGE plpgsql;

12 Updateable View

Eine View ist automatisch aktualisierbar (updatable), wenn...:

• Die View hat genau einen Eintrag in der FROM-Klausel,
der eine Tabelle oder eine andere updatable View sein
muss.

– Die View darf keine WITH, DISTINCT, GROUP
BY, HAVING, LIMIT, OFFSET enthalten.

– Die Viewdarf kein UNION, INTERSECT, EXCEPT
enthalten.

– Die SELECT-Liste der View darf keine Aggre-
gation, Window-Funktion oder SET-returning-
Funktion enthalten.

• Eine Kolonne ist aktualisierbar, wenn sie eine einfache
Referenz auf eine aktualisierbare Kolonne der darunter-
liegenden Relation ist.

• Eine autom. aktualiserbare View kann ein Mix von aktu-
aliserbaren und nicht-aktualisierbaren Kolonnen enthal-
ten.

CREATE OR REPLACE VIEW abtleiterinfo (
abtnr, abtname, abtchef)
AS
SELECT abt.abtnr, abt.name, al.abtchef
FROM abteilung abt
INNER JOIN abtleitung al
ON abt.abtnr=al.abtnr
INNER JOIN angestellter ang
ON ang.persnr=al.abtchef;
SELECT * FROM abtleiterinfo;

CREATE TRIGGER abtleiterinfo_update_abtchef
INSTEAD OF UPDATE ON abtleiterinfo
FOR EACH ROW
EXECUTE PROCEDURE abtleiterinfo_update_abtchef_fn();

13 Materialized Views

Werden zwischengespeichert. Wie normale View. Kann man mit
Trigger, Cron-Job oder manuell refreshen.

CREATE MATERIALIZED VIEW aam AS SELECT * FROM aa WHERE a
<= 500000;

REFRESH MATERIALIZED VIEW aam; --weil nicht aktualisiert
.

14 Temporäre Tabelle

Erzeugt eine Tabelle, die automatisch gelöscht wird am Ende der
Transaktion oder der Session.

CREATE TEMPORARY TABLE tmp AS SELECT generate_series
(1,100000) AS a;

15 Zugriffsrechte

View kannman horizontal und vertikal schützen. Prozeduren laufen
mit Berechtigung des Erstellers.

GRANT SELECT ON Angestellter_V TO PUBLIC; --alle dürfen
GRANT EXEC ON SalaerErhoehung TO PersonalChef_R; --nur
Gruppe PersonalChef

WHERE al.AbtChef = login --Oracle login = username

16 Graph und Tree

WITH cte_name(
CTE_query_definition -- non-recursive term
UNION [ALL] --all ist mit duplicates
CTE_query definion -- recursive term

) SELECT * FROM cte_name;

WITH RECURSIVE
graph_cte (node1, node2) AS (
SELECT node1, node2 from graph
UNION ALL
SELECT node2 AS "node1", node1 AS "node2" FROM graph
),

paths (node1,node2,path) AS (
SELECT node1, node2, ARRAY[node1] AS "path"
FROM graph_cte b1
WHERE b1.node1 = 2 --<<< Start Node >>>
UNION ALL
SELECT b2.node1,b2.node2,p.path || b2.node1
FROM graph_cte b2
JOIN paths p ON (p.node2 = b2.node1 AND b2.node1 <> ALL
(p.path[2:array_upper(p.path,1)]) /* Prevent
retracing*/)

)
SELECT path || node2 AS "path"
FROM paths
WHERE node2 = 6 --<<< End node >>>
--AND ARRAY[2,3] <@ path -- <<< via... >>> - <@ means '
is contained by'

ORDER BY array_length(path,1), path;

WITH RECURSIVE subordinates AS (
SELECT employee_id, manager_id, full_name
FROM employees
WHERE employee_id = 2
UNION
SELECT e.employee_id, e.manager_id, e.full_name
FROM employees e
INNER JOIN subordinates s ON s.employee_id = e.
manager_id

) SELECT * FROM subordinates;

3 Arten von Graphen. Adjazenzlistemit ParentId ist schnell mit in-
sert, deletes und updates aber aufwändiger für Queries(Nachfolge,
Vorgänger usw.). Nestetd-Set-Modell mit lft und rgt wobei lft er-
ste Besuch und rgt zweiter Besuch ist. Aufwändig für insert, moves,
deletes aber einfach für queries, daman einfach between 1 and 3 (=
a >= x AND a <= y) machen kann.Materialized Path mit 1.1.1 oder
Buchstaben. ltree @> ltree left ein Vorfahre von rechts oder gle-
ich. left <@ right is left a descendant of right (or equal). Wobei jede
ebene mit Punkt getrennt ist.

17 Interne Ebene

Heap = Collection von Datapages (DP). DP enthält Rows in un-
sortierter Reihenfolge ca. 8kB gross. B-tree Knoten sind eine Page
gross und enthalten Records. Baum ist selbstbalancierend und
mind. 50% Auslasung mit log(n) Zugriffszeit. Ein Index wird er-
stellt mit: ”create index customers_lastname_firstname on cus-
tomers(lastname,firstname);”

Alle Blattknoten sind auf gleicher Höhe. Jeder Knoten hat mind. k
max. 2k Einträge (Baum mit Grad k). Alle Knoten mit n Einträgen
haben n+1 Kinder. Wenn Split dann mittleres Element eine Ebene
höher schreiben und falls nicht geht dann da ein Split.

Dichte ist durchschnittlicher prozentualer Anteil von Duplikaten al-

so Anzahl distinct
Anzahl Tupel

Selektivität: Prozentueller Anteil der Tupels in einer Tabelle, die
von einer Query geliefert werden.

Query-Engine parst SQL-Anweisung und wandelt sie in Query-Tree.
Dann allenfalls optimiert. Dann kommt Optimizer und wählt einen
Execution Plan, basierend auf Statistiken über die Datenverteilung.

PG unterstützt keine clustered indexes.

17.1 Kosten-Modell

• P = Anzahl Data-Pages

• R = Anzahl Records per Page
• F = Fanout = durchschn. anzahl children in Nonleaf-Node
• Pl = Anzahl Pages im Leaf-Level des Index
• n = Anzahl Tupels, welche die Gleichheitsbedingung er-

füllen.

Index:

• Table/Heap Scan = Scanning aller Pages einer Tabelle.
Wird gemacht, wenn man mehr als 80% der Einträge
braucht. Scan = P, equality-search = 1/2 P, range search
= P

• Clustered Index Scan: scan = P, equality-search
LogF(P) = Log(P)/Log(F) oder Anzahl Kinder ungf.
Anzahl Einträge und so dann die Ebenen zählen = Anzahl
Suchblöcke. Wenn Index Block F Einträge ermöglicht
dann mit 2 IO schon F * F (*F für 3. Ebene) Einträge.
Wenn Zahl das erste mal grösser als P dann korrekte IO.
range-selektion = logF(P) + aufrunden(n/R) wobei R
= Anzahl Records pro Page ist und F der Fanout

• unclustered index: scan = P * R/F+P*R, equality search =
LogF(P∗R), range search = logF(P∗R)+n+ n

F wobei n

die erwarteten gleichen Records sind. Wenn Suchemehr
als 10% Ausbeute, dann Table-Scan mit ev. Sort besser.

Join:

• Nested Loop Join ist Anzahl Records von A * Blöcke von
B + Blöcke von A

• Block Nested Loop Join: P(R) + P(S) *
P(R)
B−2

wobei P(R)

Anzahl Pages (logisch optimiert die kleinere P(R)) ist und
B Anzahl Hauptspeicherblöcke (Input-Output-Page 2).

• Indexed Nested Loop Join: P(R) + c * P(S) * N(R) wobei
N(R) Anzahl Tupel von R und c Kosten für Indextraver-
sierung

• Hashjoin: 3*(P(R)+P(S)) und wenn Inmemory Platz dann
P(R) + P(S)

• Merge-Join: ExternalSort(R) + ExternalSort(S) + P(R)+
P(S). Sort ist 0, wenn Index besteht.

Beim clustered index kannman bei den Blätternwie bei einer linked
list hüpfen. Bei einem Hash-Join hilft der Index auf Join-Condition
nicht, da ganze kleinere Relation in Hashmap geladenwerdenmuss,
jedoch unabh. Spalten z.B. in Where hilft er. Hashjoin kann nur equi-
joins.

Falls kein Index, Hash-Join in der Regel. Falls Index: Index-Nested-
Loop effizienter als Hash-Join, falls Anzahl distincter Werte vom
Index in etwa gleich der Anzahl Rows von S ist. Ist häufig, wegen
Joins auf Foreign-Keys. Wenn Covering-Index, dann Index-Nested-
Loop join schneller. Clustered index scan auch schneller, gibt es aber
in postgresql nicht.

Index auf kleine Tabellen (< 200 Tupels) werden in der Regel nicht
verwendet, wenn die Tabelle in eine Page passt (Indexwäre dann +1
IO).

Logische Optimierung ist algebraische Umformung, sodass mehr
Tupel eleminiert werden vor dem join zum Beispiel. kosten-
basierte Optimierung basiert auf Statistiken, um den optimalen
Ausführungsplan zu finden.

Statistik beinhaltet für jedes Attribut Anzahl Tuples, Anzahl unter-
schiedlicher Werte, Min und Max und Histogramm.

• Seq Scan: scans the entire relation (table) as stored on
disk

• Index Scan: performs a B-tree traversal, walks through
the leaf nodes to find all matching entries, and fetches
the corresponding table data.

• Index Only Scan: like Index Scan but no table access be-
cause index has all columns to satisfy the query

• Bitmap Index Scan / Bitmap Heap Scan / Recheck Cond
• Sort
• HashAggregate: baut In-Memory Hashtable zum Ag-

gregieren von Tupels
• GroupAggregate: aggregiert basierend auf vor-

sortierten Tuples

17.2 Histogram

• von 1 bis 10 jeweils 10 %, die andere Spalte zeigt den
Max-Key. Wenn key drin, dann nehmen.

• Abschätzung Selektivität in % ohne Histogramm bei
Wertebereich 0-353 und x < 70 dann = 70/(353 - 0) (* An-
zahl Tupel, falls Resultat gewünscht)

• Bei x > 200 dann (353-200)/353 * Anzahl Tupels
• 237 distincte Werte. Wenn x = 210: Anzahl Tupels der

Tabelle / 237 (Anzahl untersch. Werte).

18 Verteilte DBMS

• Fragmentierung horizontal = Records sind verteilt in ver-
sch. Knoten.

2

• Fragmentierung vertikal = Spalten sind verteilt in versch.
Knoten.

• Relation ist die ganze Sicht.
• Sharding führt zu einer besseren Skalierbarkeit durch

Aufteilung der Records auf ein oder mehrere Nodes
(Shard). Wobei die Aufteilung der Records gleichbedeu-
tend zu horizontaler Fragmentierung ist.

• Im Homogene verteiltes DBMS haben allen Knoten
identische Software. Ist für User wie ein System. Bei
Heterogenen Systemen können untersch. Schema oder
Software aufweisen und haben dann Probleme mit Aus-
führung verteilter Queries (anderes Schema o.ä.) oder
Transaktion(wegen untersch. Software).

Nachteile von Replikation sind die höheren Updatekosten und die
komplexe Synchronisation, dafür aber schnellere Query oder Daten
direkt vor Ort und höhere Verfügbarkeit.

Transparenz: Der Benutzer sieht eine globale Sicht, er kennt die
Replikation der Fragmente nicht Queries werden auf der Relation
definiert, nicht auf den Fragmenten. 2. wichtige Eigenschaft auch
Atomarität von verteilten Transaktionen.

18.1 Zwei-Phasen-Commit

• 1. Prepare to commit: TM fragt alle RM, ob bereit für
Commit, falls gehen alle RM auf Zustand prepared und
antworten mit READY.

• 2. Commit. RM antworten mit ACK.

Der TM schreibt Start-Transaktion und End-Transaktion ins Log
sowie auch die Antworten aller RMs. Wenn TM nach Recovery com-
mit oder abort findet, dann abort. Ansonsten dann abort senden.
Bei RMwenn im Ready dannwarten (oder Komm.mit anderen RMs)
und abort nach Timeout schicken. Wenn RM in abort oder commit
dann undo bzw. redo.

2PC ist bewährt aber skaliert eher schlecht, da blockierend. Serial-
isierung von Transaktionen muss global geschehen, da sonst allen-
falls deadlocks.

Query Processing Strategien ”Ship-Whole” macht eine grosse mes-
sageund joint es dannauf einemNode. Bei Fetch-as-neededwerden
messages pro Tupel geschickt also viele kleine messages.

19 NoSQL

Oft nicht-Relational, schema-frei, einfaches API. Für grosse Daten-
volumen: Scale out mit Daten-Replikation und Partitonierung
(Sharding), oft als Cloud-Storage.

• Key/Value Stores - systems basically support get, put,
and delete operations based on a primary key. No use
if relationship among data. Good for session, shopping-
cart.

• Document Stores - systems store structured ”docu-
mentsßuch as JSON or XML but have no joins (joinsmust
be handledwithin your application). It’s very easy tomap
data from object-oriented software to these systems.

• Graph Stores
• Column-Family Stores - systems still use tables but have

no joins (joins must be handled within your application).
Obviously, they store data by column as opposed to
traditional row-oriented databases. This makes aggre-
gations much easier. Select wie bei normalen Daten-
banken.

• Object oriented DBMS
• In-Memory Column Datenbank MonetDB - A database

that keeps the whole dataset in RAM, Columns are

compressed, each column is mapped onto a file, trans-
action loggin for persistence or snapshot. Select wie
bei normalen Datenbanken. Ist eher für Datawarehouse
gemacht, wo nicht viel geschrieben wird.

Es gibt die Replikation Master-Slave (Mongo-Db, asynchron oder
synchron). Master schickt updates zu read-only slaves. Wenn syn-
chron, dann blockierend via 2PC, MongoDb asynchron, wegen
Majority. Wenn asynchron können Update-, Delete-, Ordering-
,Uniqueness-Conflikte entstehen. Master-Master (Cassandra, Peer
to Peer mit Conflict Resolution last write wins).

Strong consistency after an update is committed, each subsequent
accesswill return the updated value.Weak consistency: the systems
does not guarantee that subsequent accesses will return the updat-
ed value. Eventual Consistency umfasst Read yourwrites, Monoton-
ic read, monotonic write.

W+R >N then consistency garantiert. Majority wennw =N = r.Wenn
w = (N+1)/2, dann Partitiontolerant.

Pessimistic Locking is a strategy where you read a record, take
note of a version number (other methods to do this involve dates,
timestamps or checksums/hashes) and check that the version hasn’t
changed before you write the record back. When you write the
record back you filter the update on the version to make sure it’s
atomic. (i.e. hasn’t been updated between when you check the ver-
sion and write the record to the disk) and update the version in one
hit. If the record is dirty (i.e. different version to yours) you abort
the transaction and the user can re-start it.

Pessimistic Locking is when you lock the record for your exclusive
use until you have finished with it. It has much better integrity than
optimistic locking but requires you to be careful with your applica-
tion design to avoid Deadlocks.

Was ist eine In-Memory DB und wie passt MonetDB dazu? An in-
memory database is a database that keeps the whole dataset in
RAM. It means that each time you query a database or update data
in a database, you only access the main memory. So, there’s no disk
involved into these operations. A good example of such a database
is Memcached.

MonetDB ist keine In-Memory Datenbank im eigentlichen Sinne.
MonetDB verwendet ”Memory-Mapped File Arrays” bzw. memory-
mapped Dateien. Wenn MonetDB eine memory-mapped Datei ver-
wendet, kann sie die Daten direkt im Speicher auf der Festplatte
abbilden (Array). Bei einer SQL-Query, wird sie auf eine solche Datei
abgebildet und dann vom Kernel des Betriebssystems in den Spe-
icher geladen. Wenn die Datensätze nicht mehr verwendet werden,
wird ihr Speicherplatz freigeben (virtuelle Speicherverwaltung). In-
memory Datenbanken speichern in der Regel die Daten nicht sofort
zur Disk. Entweder über Logging (Live-Betrieb) oder über Snapshot
(Datenbank angehalten).

19.1 CAP and BASE

Classic distributed system transactions: focused on ACID semantics

• Atomicity - alles oder nichts auf allen Replicas.
• Consistency - after each operation all replicas reach the

same state.
• Isolation - no operation can see the data from another

operation in an intermediate state.
• Durability - once a write has been successful, that write

will persist indefinitely.

Modern Internet system: focused on BASE (Basically Available, Soft-
state (or scalable), Eventually consistent

Es ist nicht möglich, dass man consistent (all clients same view of
data), availability(every request to a non-failing node must result in
a response) und partition-tolerance (No set of failures less than to-
tal network failure is allowed to cause invalid response) zur gleichen
Zeit erreicht.

Consistent, Available (CA) Systems have trouble with partitions
and typically deal with it with replication. Examples of CA systems
include: Traditional RDBMSs like Postgres, MySQL, etc (relational)

Consistent, Partition-Tolerant (CP) Systems have trouble with
availability while keeping data consistent across partitioned nodes.
Examples of CP systems include: MongoDB (document-oriented),
Redis (key-value), MemcacheDB (key-value), Neo4J (graph)

Available, Partition-Tolerant (AP) Systems achieve ëventual con-
sistency”through replication and verification. Examples of AP
systems include: Cassandra (column-oriented/tabular), CouchDB
(document-oriented)

Eventual consistency ist etwa ein Gegenteil von strong consisten-
cy. Dort jeder nachfolgende access wird den updated value liefern.
Eventual Consistency kann man berechnen wann die Daten etwa
wieder konsistent sein sollten wegen Netzwerkdelay, systemload
oder Anzahl Replicas z.B. bei DNS möglich.

19.2 Neo4j

• MATCH (n:Person)-[:KNOWS]->(m:Person) WHERE
n.name = ’Alice’

• MATCH (multitalent:Person)-[a:ACTED_IN]->(m:Movie)
WHERE (multitalent)- [:DIRECTED]->(m) RETURN a.roles

• MATCH (audrey:Person {name: Äudrey Tautou”})-
[a:ACTED_IN]->(m:Movie) WHERE (audrey)-[:DIRECTED]-
>(m) RETURN a.roles

• CREATE (n)-[r:KNOWS]->(m) : Create a relationship with
the given type and direction; bind a variable to it.

• DELETE n, r : Delete a node and a relationship.
• DETACH DELETE n : Delete a node and all relationships

connected to it.
• MATCH p=shortestPath((bacon:Person {name:”Kevin

Bacon”})-[*]-(meg:Person{name:”Meg Ryan”})) RETURN
p

• MATCH (bacon:Person {name:”Kevin Bacon”})-[*1..4]-
(hollywood) RETURN DISTINCT hollywood
mit 1 bis 4 Hüpfern.

RETURN * Return the value of all variables.

[MATCH WHERE] [OPTIONAL MATCH WHERE] [WITH [OR-
DER BY] [SKIP] [LIMIT]] (CREATE [UNIQUE] | MERGE)*
[SET|DELETE|REMOVE|FOREACH]* [RETURN [ORDER BY] [SKIP]
[LIMIT]]

19.3 Mongo-DB

• Table => Collection
• Row => Document
• rowid => _id
• Join => DBRef

Safes data in json or bson. Works with MapReduce und aggregates.

Kennt Range- und Hash-based Sharding, also horizontale Partition-
ierung.

readConcern: level: <”majority”|”local”|”linearizable”>

local is default, instance most recent data. Linearizable waits until
all writes finished, that started before query.

Der Client führt einige Schreiboperationen aus. A kommt zu einem
späteren Zeitpunkt wieder dazu (d.h alle Knoten A, B und C sind
wieder imNetzwerk)?Wie reagiert das System?Awird als Secondary
wieder in den Verbund von B und C aufgenommen. A aktualisiert
sein Oplog und führt die Operationen nach.

Wie können Sie das Majority-Protokoll in MongoDb umsetzten?
Durch setzen des WriteConcerns (standard 1, ”majority”möglich),
so dass alle Schreiboperationen von einer Majorität der Knoten
bestätigt werden müssen (sonst wird die Schreiboperation nicht
ausgeführt)

Welcher Mechanismus verwendet MongoDb für das Synchro-
nisieren von Replikas. Ist dieser Mechanismus asynchron oder syn-
chron?Oplog keeps an ordered list of write operations that have oc-
curred. MongoDB applies database operations on the primary and
then records the operations on the primary’s oplog. The secondary
members then copy and apply these operations in an asynchronous
process.

var class = {
_id: ObjectId (”509980df3”),
course: {code: ”Dbs2”, title: ”Advanced DB”}, –Subdokument
students: [”Peter”, ”Manuel”,...], –Array of Strings
}

var x = ObjectId()

MongoDb-Shell: Wenn man den Punkt-Operator verwendet, muss
der key dann auch in ””. Also zum Beispiel ”Blogpost.stats.visitors” :
{$gte: 3}

• db.unicorns.insert({name: ”Aurora”, gender: ”f”,
weight: 450, loves: [”apple”, ”grape”], birthday: new
ISODate(’2013-04-15’)}

• db.unicorns.remove({})
entfernt alle dokumente

• db.unicorns.find()
zeigt alle an.

• db.employees.findOne({_id:
db.employees.findOne({name:’Moneo’}).manager});
Manueller Join

• db.employees.find({manager:{$in:
[db.employees.findOne({name:’Leto’},
{_id:1})._id]}},{_id:0})
Manueller join db.employees.insert({_id: ObjectId(”1a”),
name: ’Duncan’, manager: ObjectId(”5c”)});
Find Manager of Duncan

• db.unicorns.find({gender:”f”,loves:”apple”})
für einfache bedingung (loves kann array sein).

• db.unicorns.find({gender:”f”, loves:{$in:[”apple”, ”car-
rot”]}})

gibt alles zurück wenn im array apple or carrot ist.
• db.unicorns.find({gender:”f”, loves:{ $all:[”apple”, ”car-

rot”]}})
Im Array muss Apple und Carrot sein.

• db.unicorns.find({$or:[{vampires: {$exists: false}}, {vam-
pires: {$lte:0}}]})
wenn property vampires nicht existiert oder less than
equals 0 ist.

• db.unicorns.find({gender:”m”, $and:[{weight:
{$gte:600}}, {weight:{$lte:900}}]})
wenn gewicht zwischen 600 und 900 ist.

• db.unicorns.find({gender:”f”, $or:[{loves:”apple”},
{loves:”carrot”}]}, {_id:0, name:1, gender:1, dob:1})
or anstelle von in und zusätzlich noch Einschränkung
welche Spalten kommen mit :0 und :1

• db.unicorns.update({name: ”Roooooodles”}, {$set:
{weight: 590}}, {upsert: false})
upsert true macht neues Dokument. Erste {} ist Query,
dann Ersatzdokument. $set definiert update-felder
und $unset : {field:””} löscht das feld. Falls upsert dann
Dokument aus Query + $set Feldern.

• db.unicorns.update({name: ”Roooooodles”}, {$set: {a: 3,
b: 10}});
fügt a und b hinzu.

• db.unicorns.update({name: ”Aurora”}, {$push: {loves:
”sugar”}, ...})
push fügt array element hinzu.

• db.unicorns.update({name: ”Pilot”}, {$inc: {vampires: -
2}}, {upsert:false})

• db.unicorns.update({name: ”Roooooodles”}, {$inc: {vam-
pires: 90, weight: 10}});

• db.unicorns.update({gender:”f”, $or:[{loves:”apple”},
{loves:”carrot”}]}, {$push: {loves:”tomato”}}, {up-
sert:false, multi:true})
mit Multi werden mehrere Dokumente updated. Push
fügt ein Array Element hinzu. Standard ist multi-false.

• db.scores.find({ results: { $elemMatch: { $gte: 80, $lt: 85
} } })
Array Element muss alle Bedingungen erfüllen.

Für Operatoren gilt folgendes { <field1>: { <operator1>: <value1> },
... } wobei es diese operatoren gibt:

• $eq Matches values that are equal to a specified value.
• $gt Matches values that are greater than a specified val-

ue. Mit e am schluss dann equals
• $in Matches any of the values specified in an array.
• $lt Matches values that are less than a specified value.
• $or Joins query clauses with a logical OR returns all doc-

uments that match the conditions of either clause.
• { $set/$push: { <field1>: <value1>, ... } }
• $existsMatches documents that have the specifiedfield.
• { <field>: { $elemMatch: { <query1>, <query2>, ... } } } The

elemMatch operator matches documents that contain
an array field with at least one element that matches all
the specified query criteria.

Aggregate Funktionen

• $match, Matches documents equally funktionieren wie
find. Subdokumentzugriff via .

• $project, Felder ausblenden.
• $lookup, macht ein Join, from ist die andere aggrega-

tion, lokalfield ein Feld der aufr. coll.
• $unwind, macht aus einem Array mehrere doku-

mente/rows

db.address.aggregate([
{$match: {street: ”Blumenstrasse 13”}},
{$lookup : {from: ”persons”, localField: ”_id”, foreignField: ”ad-
dress”, as: ”persons”}},
{$project: {_id: 0, street: 1}}]).pretty();

db.orders.aggregate([
{ $match: { status: ”A” } },
{ $group: { _id: ”$cust_id”, total: { $sum: ”$amount” } } },
{ $sort: { total: -1 } }
])

db.collection.aggregate([
{ $group: { _id: null, myCount: { $sum: 1 } } },
{ $project: { _id: 0 } }
])

$size gibt Grösse von array zurück.1

20 Evolutionary DB Design

1. Neue Spalte erstellen, 2. Migrationsskript schreiben. 3. Änderung
der Applikation. 4. Änderungen aller DB-Zugriffe im App, View, SP
und Trigger usw. 5. Ändern von Indices. 6. Übertragung aller Än-
derungen mit Versionsverwaltung.

Alle DB-Änderungen sind Migrationen (DB Migrations-Tools

wie z.B. Flyway). Alle DB-Artefakte sind versions-kontrolliert
mit Applikationscode. SW-Entwickler integrieren kontinuier-
lich DB-Änderungen. Eine DB besteht aus Schema und Daten
DB-Refactorings sind automatisiert (DB-Migrations-Tools) Klare
Trennung aller DB-Zugriffe im Applikationscode

21 GraphQL

Sämtliche benötigtenDatenwerden in einem ”Roundtrip” geliefert.
Die vom Client definierte Datenstruktur ist deklarativ und typisiert.
der Client definiert die verlangten Daten und nicht der Server. Kein
N+1 Problem. Nicht normiert.

Restful Resultat enthält z.T. unnötigerweise alle Objekte und de
Objekte enthalten immer alle Felder. SQL Direkte Abfragen über
HTTP(s) nicht gegeben

query alleAngestelltenNamen {
allAngestellters {

nodes {
name

}
}

}

query alleAngestelltenMitInLuzern {
allAngestellters(filter: {

and: [{
salaer: {greaterThan: "5000"}

}, {
salaer: {lessThan: "8000"}

}],
wohnort: {equalTo: "Luzern"}

}, orderBy: SALAER_ASC)
{

nodes {
name
salaer

}
}

}

22 Column Family Store Cassandra

keyspace is like Database, column family like table. consistency set-
ting =QUORUM:majority of the nodes are accessed and the column
with the newest timestamp is returned. consistency setting = ALL:
all nodeswill have to respond to reads orwrites. consistency setting
= ONE (the default): the data from the first replica is returned even
if it is stale. consistency setting = QUORUM: the write has to propa-
gate to the majority of the nodes before it is considered successful

Consistent Hashing Algorithm for Partitioning. Gossip protocol is
used for cluster membership discover node state for all nodes in a
cluster (Heartbeat).

Scales linear, because you can add a node and shard consistent hash-
ing some data in cassandra.

On Keyspace you can define replication factor.

Atomicity at the row level. No traditional transaction.

CREATE COLUMNFAMILY Customer (KEY varchar PRIMARY KEY,
name varchar, city varchar, web varchar); INSERT INTO Customer
(KEY,name,city,web) VALUES (’mfowler’, ’Martin Fowler’, ’Boston’,
’www.martinfowler.com’); SELECT * FROMCustomer; SELECT name,
web FROM Customer; SELECT name, web FROM Customer WHERE
city=’Boston’;

Not use for ACID, SUM, AVERAGE. Scales on Write so for Event Log-
ging, CMS useful.

23 Übungen

23.1 Ü1

CREATE TABLE BankCustomer(
CustomerId SERIAL NOT NULL PRIMARY KEY,
Name TEXT NOT NULL,
Birthdate DATE,

3

Customer_AddressId INTEGER);

CREATE TABLE Address(
AddressId SERIAL NOT NULL PRIMARY KEY,
Street TEXT NOT NULL,
Zip INTEGER,
City TEXT NOT NULL);

CREATE TABLE BankAccount(
AccountId SERIAL NOT NULL PRIMARY KEY,
Account_CustomerId INTEGER NOT NULL,
Balance DOUBLE PRECISION NOT NULL,
Currency TEXT NOT NULL DEFAULT 'CHF'

);

CREATE TABLE BankManager(
ManagerId SERIAL NOT NULL PRIMARY KEY,
Name TEXT NOT NULL,
Manager_AddressId INTEGER

);

CREATE TABLE CustomerManager(
CustomerId INTEGER NOT NULL,
ManagerId INTEGER NOT NULL,
PRIMARY KEY(CustomerId, ManagerId)

);

public enum Currency {
CHF, EUR, USD, JPY, GBP
}

@Entity
public class Address {
@Id
private long addressid;

@OneToOne(mappedBy="address")
private BankCustomer customer;

@OneToOne(mappedBy="address")
private BankManager manager;
}

@Entity
public class BankAccount {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private long accountid;

private double balance;

@Enumerated(EnumType.STRING)
private Currency currency;

@OneToOne
@JoinColumn(name="Account_CustomerId")
private BankCustomer customer;
}

@Entity
public class BankCustomer {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private long customerid;

private Date birthdate;

@OneToOne(optional=true)
@JoinColumn(name="Customer_AddressId")
private Address address;

@ManyToMany(mappedBy="customers", fetch=FetchType.EAGER

)
private Collection<BankManager> managers = new
ArrayList<>();

@OneToMany //name bezieht sich auf die Many Seite und
referencedColumnName auf die eigene.
@JoinColumn(name="Account_CustomerId",
referencedColumnName="CustomerId")
private Collection<BankAccount> accounts = new
ArrayList<>();

private String name;

@Override
public boolean equals(Object obj) {
if (!(obj instanceof BankCustomer)) return false;
return ((BankCustomer)obj).customerid == customerid;
}
}

@Entity
public class BankManager {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private long managerid;

private String name;

public long getManagerid() {
return managerid;
}

@OneToOne(optional = true)
@JoinColumn(name = "Manager_AddressId")
private Address address;

@ManyToMany
@JoinTable(name = "CustomerManager", joinColumns = {
@JoinColumn(name = "ManagerId") }, inverseJoinColumns
= { @JoinColumn(name = "CustomerId") })
private Collection<BankCustomer> customers = new
ArrayList<>();

public void addCustomer(BankCustomer customer) {
this.customers.add(customer);
if(!customer.getManagers().contains(this)) {
customer.getManagers().add(this);
}
}

public void removeCustomer(BankCustomer customer) {
this.customers.remove(customer);
if(customer.getManagers().contains(this)) {
customer.getManagers().remove(this);
}
}
}

public Bank {
public static void openAccount(String name, Date
birthDate) {
EntityManager em = factory.createEntityManager();
try {
em.getTransaction().begin();
BankCustomer customer = new BankCustomer();
customer.setName(name);
customer.setBirthdate(birthDate);

BankAccount account = new BankAccount();
account.setBalance(0);
account.setCurrency(Currency.CHF);
account.setCustomer(customer);

em.persist(account);

customer.getAccounts().add(account);
em.persist(customer);

System.out.println("ACTION NEW: "+customer);

em.getTransaction().commit();
} catch (Exception e) {
em.getTransaction().rollback();
System.err.println("Failed to open account with
message [" + e.getMessage() + "]");

} finally {
em.close();
}
}
public static void transfer(long fromAccountId, long
toAccountId, double amount) {
EntityManager em = factory.createEntityManager();
try {
em.getTransaction().begin();
BankAccount from = em.find(BankAccount.class,
fromAccountId);
BankAccount to = em.find(BankAccount.class,
toAccountId);

from.setBalance(from.getBalance() - amount);
to.setBalance(to.getBalance() + amount);
System.out.println("ACTION TRANSFER: " + from + " =>
" + to + ", " + amount);

em.getTransaction().commit();
} catch(Exception e) {
em.getTransaction().rollback();
System.err.println("Failed to execute transfer with
message [" + e.getMessage() + "]");

} finally {
em.close();
}
}

}

23.2 Ü3

CREATE OR REPLACE FUNCTION public.projektzuteilen(angnr
integer, projektnr integer, arbzeit integer, startzeit
date)
RETURNS integer
LANGUAGE plpgsql

AS $function$
DECLARE

carbzeit int := 0;
BEGIN

IF arbzeit < 10 OR arbzeit > 90 THEN
return -1;

END IF;

IF startzeit IS NULL THEN
startzeit := now();

END IF;

select SUM(zeitanteil) INTO STRICT carbzeit from
projektzuteilung where persnr = angnr;
IF carbzeit + arbzeit > 100 THEN

RETURN -2;
END IF;

IF EXISTS(SELECT 1 FROM projektzuteilung where
persnr = angnr AND projnr = projektnr) THEN

RETURN -3;
END IF;

IF NOT EXISTS(SELECT 1 FROM angestellter where
angnr = persnr) OR NOT EXISTS

(SELECT 1 FROM projekt where projektnr = projnr
) THEN

RETURN -5;
END IF;
BEGIN

INSERT INTO PROJEKTZUTEILUNG (persnr,
projnr, zeitanteil, startzeit)

VALUES (angnr, projektnr, arbzeit,
startzeit);

EXCEPTION
WHEN UNIQUE_VIOLATION THEN RETURN -6;
WHEN FOREIGN_KEY_VIOLATION THEN RETURN -7;

END;

RETURN 0;
END;
$function$

CREATE OR REPLACE FUNCTION getAllFoo()
RETURNS SETOF foo AS $$
DECLARE
r foo%rowtype;
BEGIN
FOR r IN SELECT * FROM foo WHERE fooid > 0
LOOP
-- do something...
RETURN NEXT r; -- return current row of SELECT
END LOOP;
RETURN;
END
$$ LANGUAGE 'plpgsql';

23.3 Ü4

DO LANGUAGE plpgsql $$
DECLARE
c1 CURSOR IS
SELECT name, persnr, salaer FROM angestellter
ORDER BY salaer DESC;
-- start with highest-paid angestellter
my_name CHAR(20);
my_persnr NUMERIC;
my_salaer NUMERIC(7,2);
BEGIN
OPEN c1;
truncate Top5;
FOR i IN 1..5 LOOP
FETCH c1 INTO my_name, my_persnr, my_salaer;
EXIT WHEN NOT FOUND;
/* in case the number requested is more than the total
number of employees
*/
INSERT INTO top5 VALUES (my_name, my_persnr, my_salaer);
END LOOP;
CLOSE c1;
END;
$$

CREATE SCHEMA angpackage AUTHORIZATION anguser;
CREATE FUNCTION angpackage.AbteilungsAngestellte(
Abteilungsnummer IN INTEGER)

DROP FUNCTION IF EXISTS DepartmentSalaries();
DROP TYPE IF EXISTS HOLDER;
CREATE TYPE HOLDER as (abtnr INT, totalsalary NUMERIC
(7,2));

CREATE OR REPLACE FUNCTION DepartmentSalaries()
RETURNS SETOF holder AS $$
DECLARE

r holder%rowtype;
BEGIN
FOR r IN SELECT abtnr, SUM(salaer) AS totalsalary FROM
GetEmployees() GROUP BY abtnr
LOOP
RETURN NEXT r;

END LOOP;
RETURN;
END;
$$ LANGUAGE 'plpgsql';

SELECT * FROM DepartmentSalaries();

24 Begriffe

Polyglot Persistence is a fancy term tomean that when storing da-
ta, it is best to usemultiple data storage technologies, chosenbased
upon the way data is being used by individual applications or com-
ponents of a single application.

Fetch-As-Needed pro Join-Row eine Nachricht mit den Attributen.
Fetch-Whole ganze Tabelle abz. where.

Funktionen überladen: Mit SET search_path = angpackage, ”$us-
er”, public; kann Funktionen überladen. Und so das: CREATE
SCHEMA angpackage AUTHORIZATION anguser; CREATE FUNC-
TION angpackage.AbteilungsAngestellte(Abteilungsnummer IN IN-
TEGER)

Heap: filestructure, lists of unordered records <> In-Memory heap!!!
Retrieval inefficient as searching is linear

B+-Index: Diskbasierter B-Baum über ein Attribut bzw. At-
tributkombination. Jeder Knoten enthält nur die At- tributwerte.
Blatt-Knoten enthalten die Disk-Referenz auf das gespeicherte
Tupel.

Clustered B+-Index:Wie B+-Index aber Blatt-Knoten enthalten die
Tupel. D.h. die Tupel sind sortiert nach dem Attribut des Index.
Achtung, max. 1 Clustered Index pro Tabelle!

B+ Index basierend auf einem Clustered Index: Da es nur einen
Clustered Index proTabelle geben kann, werden weitere B+-Indexe
auf anderen Attributen definiert. Im Gegensatz zu den B+-Indizes
sind in den Blattknoten die Werte des Clustered Index gespeichert
� bedingt einen zusätzlichen Zugriff auf den Clustered Index.

Bit-Map-Index Index Update ist teuer. Schnell für OR Abfragen. Für
kleinen Wertebereich.

Replizierte Verteilung der Daten=>höhere Verfügbarkeit (ge-
ographische Verteilung, bessere Skalierbarkeit, Anwendungsfälle:
Loadbalancing, Realtime OLAP, geograph. Verteilte System mit
lokaler Teilautonomie

SARG-able Queries: Jede Query wird zuerst analysiert um Suchar-
gumente zu fnden -> Nur Suchargumente können Indexe benutzen,
Ein Suchargument ist entweder ein exakt Match oder eine Range,
Suchargumente können Listen sein, die mit AND verknüpft sind,
Eine Seite des Vergleiches ist Konstante oder aufösbare Variable,
Eine Seite des Vergleichs ist Kolonnenname.

Vertikale Fragmentierung: Spalten werden verteilt. Column-
family-Store wie Cassandra.

Scaling out: Clustering mit Standard-HW

Scaling up: Schnellerer Server

Replikationsarten: Synchron (Eager) vs. Asynchron (Lazy, mit Ver-
sionsnummern)

Quorum Consensus: Wie Majority, aber mehrere Votes pro Node
möglich

Replika Sets: Normal 3 Nodes pro Set, 1 Primary Node wird
gewählt,Wnur anPrimary/immer nur 1Primary, Datenwerdennach
W repliziert, Load-Balancing für R

25 Prüfungsaufgaben

4

	OR-Mapper
	Vererbung Single-Table, Joined-Table, Table-Per-Class

	Postgresql Functions
	Funktionen
	Loops/Condition
	Array
	Dictionary(hstore)
	JSON
	XML
	Table
	Cursor
	Trigger
	Updateable View
	Materialized Views
	Temporäre Tabelle
	Zugriffsrechte
	Graph und Tree
	Interne Ebene
	Kosten-Modell
	Histogram

	Verteilte DBMS
	Zwei-Phasen-Commit

	NoSQL
	CAP and BASE
	Neo4j
	Mongo-DB

	Evolutionary DB Design
	GraphQL
	Column Family Store Cassandra
	Übungen
	Ü1
	Ü3
	Ü4

	Begriffe
	Prüfungsaufgaben

