1 OR-Mapper

Eager Loading default bei OneToOne und ManyToOne
Lazy Loading default bei OneToMany und ManyToMany
EntityManager.persist(), EntityManager.remove() bei je-
dem Element, da nicht transitiv. Implizit bedeutet,
dass em.remove() dann alle referenzierten Anderun-
gen [8scht. Kaskade bei Relation angeben, damit impliz-
it: @OneToMany(cascade = CascadeType.PERSIST, Cas-
cadeType.Remove, ...)

cascade mit Persist ist Aggregation und mit Remove
dann sogar Komposition.

Java Persistence Querying ist wie SQL aber auf Entity-
Modell nicht Db Modell.

JPQL Named/Positional-Query Parameters werden via
Funktion gesetzt ohne SQL-Injektion. Dynamic Querys,
kdnnen zu Injektion fiihren. Werden beide zur Laufzeit
gepriift. @NamedQuery kdnnen sogar statisch gepriift
und vom JPA-Provider voroptimiert werden.

Criteria APl kann zur Compile-Zeit gepriift werden. Ohne
SQL Injection.

EntityManagerFactory factory =
Persistence.createEntityManagerFactory("Bank");
EntityManager em = factory.createEntityManager();
Query query = em.createQuery("SELECT a from
BankCustomer ¢ join c.accounts a");

Query query = em.createQuery("SELECT distinct a.id,
a.balance from BankAccount a order by a.balance desc

Query query = em.createQuery("SELECT a from BankAccount
a where a.balance >= 0 and a.balance <= :upper");
query.setParameter ("upper", 2000); List<BankAccount>
list = query.getResultList();

Query query = em.createQuery("select m from BankManager
m where 'Bob' in (select c.name from m.customers c)");

Query query = em.createQuery("select c from
BankCustomer c where c.BankAccount.accountid =
10654321 ") ;

Query query =
em.createNamedQuery ("FindPrivateBankCustomers
OlderThanEqual");

query.setParameter(1, new
Date(thirtyYearsAgo.getTimeInMillis()));

List<PrivateBankCustomer> customers =
query.getResultList();

List<BankAccount> list = query.getResultList(); for
(BankAccount account : list) {
System.out.println(account); }

CriteriaBuilder criteriaBuilder =
entityManager.getCriteriaBuilder();

// Query for a List of objects.

CriteriaQuery criteriaQuery =
criteriaBuilder.createQuery();

Root employee = criteriaQuery.from(Employee.class);
criteriaQuery.where(criteriaBuilder.greaterThan(
employee.get ("salary"), 100000));

Query query = entityManager.createQuery(criteriaQuery);
List<Employee> result = query.getResultList();

em.getTransaction() .begin();

BankC = new BankC O3
customer.setName("Bill"); em.persist(customer);
em.getTransaction().commit () ;

//update
BankCustomer customer = new BankCustomer();
customer.setName ("Bill"); em.persist(customer);

//delete

EntityManager em = factory.createEntityManager();
em.getTransaction() .begin();

BankAccount account = em.find(BankAccount.class, 1L);
em.remove (account) ;

em.getTransaction().commit();

em.close();

--Gegen Dirty Reads und Lost Updates, PESSIMISTIC_READ
em.lock(from, LockModeType.PESSIMISTIC_WRITE);
em.lock(to, LockModeType.PESSIMISTIC_WRITE);

QEntity //sagt, dass man die Klasse speichern kann. Ist
der Name, bei JPA-Query

QTable(name = "bankcustomer")

@NamedQuery (name="FindPrivateBankCustomers0lder

ThanEqual", query="SELECT c FROM BankCustomer c WHERE
c.birthdate <= 71 ORDER BY c.name")
public class BankCustomer {

eId

QGeneratedValue(strategy = GenerationType.IDENTITY)
//entspricht dem serial auf der Db, sonst auto also
globale Id

/* Alternative

Entsp. einer sep. Tabelle mit KeyName, KeyValue mit
Namen KeyTable

QGeneratedValue(strategy = GenerationType.TABLE,
generator ="CustomerGen")

@TableGenerator (name ="CustomerGen", table ="KeyTable",
pkColumnName ="KeyName", valueColumnName ="KeyValue",
pkColumnValue ="CustomerKey")

@GeneratedValue(strategy = GenerationType.SEQUENCE,
generator = "BankCustGen")

@SequenceGenerator (name = "BankCustGen", sequenceName =
"CustomerIdSeq",allocationSize=1) //die 2 Zeilen
entsp. Create Sequence cutomeridseq; auf Db.

@Column(name="accountid") //auch unique=true,
nullable=true, length=200 als parameter moeglich, name
implizit propertyname

*/

private long customerId;

public void setCustomer (BankCustomer newCustomer) {

BankCustomer oldCustomer = this.customer;

this.customer = newCustomer;

if (newCustomer != null &&

!newCustomer . containsAccount (this)) {
newCustomer.addAccount (this) ;

}

if (oldCustomer != null &&

oldCustomer.containsAccount (this)) {
oldCustomer.removeAccount (this) ;

b2y

@Entity
QTable (name="PET_INFO")
public class Pet {

@Temporal (TemporalType . TIMESTAMP)
private Calendar birthdate;

@Transient
private String notSaved;

QEnumerated (EnunType . STRING)
private PetType type;

@ManyToMany (cascade = { CascadeType.PERSIST,
CascadeType.MERGE,
CascadeType.REMOVE, CascadeType.ALL

3,
fetch = FetchType.LAZY

@JoinTable(name = "post_tag",
joinColumns = {@JoinColumn(name = "post_id")},
//JoinColumn "referencedColumnName" ist impl. PK
//auch kommasepariert mehrere méglich
inverseJoinColumns = {@JoinColumn(name = "tag_id")}

)

private List<Tag> tags = new ArrayList<>();

//Seite 1:

@ManyToOne (optional = false, fetch = FetchType.EAGER)
@JoinColumn (name="0WNER_ID")

//optional nur fiir OneToOne und ManyToOne, da ansonsten
List einfach leer.

Owner owner;

//Seite 2:
@0neToMany (mappedBy="owner")
private List<Pet> pets;

@OneToMany //Gegenseite dann @ManyToOne
@JoinColumn (mappedBy="friends")

@JoinColumn(name = "addressid",
referencedColumnName = "addressref", //Wenn nicht PK
von Pet

insertable = false, updatable = false)
private List<Pet> friends = new ArrayList<>();

1.1 Vererbung Single-Table, Joined-Table, Table-Per-Class
Ergibt eine Tabelle mit Spalte type und Inhalt aller Klassen

Q@Entity O@Inheritance(strategy =
InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type")

public abstract class BankCustomer { QId private String
name;}

@Entity @DiscriminatorValue("Retail")
public class RetailBankCustomer extends BankCustomer {
private int fees; }

Ergibt separate Tabellen fir alle Klassen. Abstracte Klasse/Tabelle
hat nur cutomerid, type, name.

//RetailBankCustomer dann auch customerId und fees
@Entity @Inheritance(strategy = InheritanceType.JOINED)
@DiscriminatorColumn(name = "type")

public abstract class BankCustomer { @Id private int
customerId; private String name;}

@Entity @DiscriminatorValue("Retail") public class
RetailBankCustomer extends BankCustomer { private int
fees;}

Tabelle mit Namen wie konkrete Klasse inkl. Properties von abstrak-
ter Klasse.

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract ...

2 Postgresql Functions

Programme 'gespeichert’ (stored) bei oder nahe den Daten. Kapselt
Domain Logik, Datenkapselung. Performance. Wiederverwend-
barkeit, Feineres Berechtigungsmanagement, haben eigens Recht
fr Ausfihrung, Logging mdglich. Nachteil Wartbarkeit, Portier-
barkeit, ev. genligen Views.

Bei PL/SQL: Prozedurale Sprachelemente mit deklarativem SQL
mischen. PL/SQL (Oracle) sind Keywords und Variablen case-
insensitiv; nahe SQL/PLM

PL/pgSQL (postgres): case-sensitiv, nahe SQL/PLM, moderner.
Code wird bei Aufruf geparsed, Pseudocode in Db gespeichert,
erst bei Ausfiihrung voller Syntax Check, SQL Statements werden
vorkompiliert und wiederverwendet. Nur functions mit out modifi-
er und void Datentyp. Schema anstelle packages.

create [or replace] function

name ([[IN | OUT] [argname] argtype [,...]1 1)
[RETURNS rettype

--kann z.B. void, int, bigint, text, bool, int[].
--setof int dann return next ...; und am Schluss return
--wenn OUT vorhanden returns weg lassen.

| RETURNS TABLE (colname coltype

[...1)]

AS $$

—- ... Source Code gemaess language

$$ language [plpgsqllSQLl...]

CREATE OR REPLACE FUNCTION get_AbtMA (nr integer)
RETURNS TABLE (

abtname VARCHAR,

abtMA VARCHAR

AS $$

BEGIN

RETURN QUERY
SELECT abt.name, ang.name FROM abteilung abt
join angestellter ang on ang.abtnr=abt.abtnr
where abt.abtnr=nr
order by abt.name, ang.name;

END; $$

LANGUAGE plpgsql;

select * from get_AbtMA(2);

create or replace function id_as_text (abc personen) --—
personen ist eine Tabelle und Zugriff via abc.Id usw.

DECLARE

varl int := 0; --nur dann varl := varl + 1 moéglich!!!

var2 int not null; var5 angestellter.id/type; -- Spalte
Id

var6 angestellterjrowtyp; var7 record;

BEGIN

BEGIN
SELECT ..
Tupel

EXCEPTION
WHEN division_by_zero THEN
WHEN NO_DATA_FOUND THEN z
STRICT
WHEN TOO_MANY_ROWS THEN z := 0; --Bei SELECT INTO
STRICT
WHEN UNIQUE_VIOLATION THEN z :
UPDATE wegen PK Violation
WHEN FOREIGN_KEY_VIOLATION THEN z:=0;
UPDATE wegen Foreign-Key Violation

END; --Oder OTHERS. Falls Fehler sprung zu Exception
und dann weiter nach End.

IF NOT EXISTS (SELECT 1 FROM angestellter WHERE persnr =
anr) THEN

RAISE EXCEPTION 'ang not exist';

END IF;

INTO STRICT varil FROM tbl --muss genau ein

--Bei SELECT INTO

0; --Bei INSERT,

--Bei INSERT,

UPDATE Angestellter SET Salaer = Salaer + Sallncr WHERE
Name = AngName;

IF NOT FOUND THEN --FOUND wird bei UPDATE, DELETE true/
false wenn Tuppel bearbeitet

ELSE RAISE NOTICE 'name ist: %', name; --RATSE NOTICE
macht ein Logeintrag, RAISE EXCEPTION bricht ab.

END IF;

INSERT INTO films (code, title, did, date_prod, kind)
VALUES
('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy')

END;

3 Funktionen

Erlauben komplexe Berechnung nur mit einem Aufruf. Separate
Berechtigungen. Kénnen vorkompiliert werden.

string || string/number -- String concat, oder array
concat

upper (string), lower(string --upper/lower-case
substring(string [from int] [for int]) -- substring(

Thomas' from 2 for 3) = hom
substr('alphabet', 3, 2) = ph
length(string) --Numbers of chars
now() --Date typ
mod(int, int) --Modulo
coalesce (SalaerSumme ,0) --NULL ersetzen

4 Loops/Condition

IF (Sallncr < 0 OR Sallncr > 2000 OR X IS NULL) THEN
. END IF;
IF expression THEN statements ELSIF other-expression
THEN statements ELSE statements END IF;
FOR i in 1..10 LOOP ... END LOOP;
FOR record-var IN query LOOP return next record-var; END
LOOP; return; --record-var must be declared as record
or jrowtyp return next adds result row and return;
finish
--EXIT, CONTINUE méglich aber auch z.B. EXIT WHEN y >
4000000

FOR i IN 1 .. array_upper(a, 1) LOOP ... END LOOP; --
Loop array a
WHILE i < 100 AND b > 1 LOOP ... END LOOP;

FOREACH i IN ARRAY a LOOP ... END LOOP;

5 Array
Array Index fangt immer bei 1 an. Mit 2:3 dann 2. + 3. Zeile.

unnest (anyarray) --Macht aus array row fiir loop
array_ndims(anyarray) oder array_dims(anyarray) --
Dimension in int oder text

array_length(anyarray, int) --Linge von array, der
dimension int

array_prepend(anyelement, anyarray) oder array_append(
anyarray, anyelement)

array_to_string(anyarray, text [, text]) -- array,
delimi, null string
new_arr := array_append(new_arr, 4) oder arr[il] := 1;

SELECT (array[1,2,3,4,5,6])[2:5] dann {2,3,4,5} --Slice
Query, féngt bei 1 an.

INSERT INTO sal_emp VALUES ('Bill', ARRAY[10000, 10000],
ARRAY[['meeting', 'lunch'],['train', 'present']]

INSERT INTO geometries VALUES (4, 'Line B', ARRAY[ARRAY
[6,2],ARRAY[5,5]11); --ist dann {{6,2},{5,5}}

SELECT ARRAY(SELECT 1 + (random()*5 int FROM
generate_series(1,6) ORDER BY 1); --{1,3,5,5,6,6}

SELECT ARRAY[1.1,2.1,3.1]::int[] = ARRAY[1,2,3] --true
SELECT ARRAY[2,7] <@ ARRAY[1,7,4,2,6]; -- true is
contained by

SELECT ARRAY[1,4,3] &% ARRAY([2,1] --true, 0> bed.
contains und && bed. overlap und = bed. equal

select * from tictactoe where 'z2 k2' = any(board); —-
Wenn ein Element vorhanden ist.

select ARRAY (select 1 + (random()*5)::int FROM
generate_series(1,6));

SELECT * FROM planet_osm_point WHERE tags 7 'parking';
--Alle Zeilen die den Schlissel parking enthalten.

Geht nicht '{{"infsys", "dbsi1"}, {"prog2", "dbs2", "vss
"}}', weil nicht gleiche Dimension

select

ang.persnr,

min(ang.name),

array_agg(trim(proj.bezeichnung)) --Macht array

from angestellter ang

left outer join projektzuteilung pz on ang.persnr=pz.
persnr

left outer join projekt proj on pz.projnr=proj.projnr
group by ang.persnr

order by ang.persnr;

6 Dictionary(hstore)

CREATE TABLE kvp_table(id serial, kvp hstore);

SELECT 'a=>1,a=>2'::hstore;

SELECT hstore(t) FROM test AS t; --Spalten sind jeweils
key

SELECT akeys(mykvpfield) FROM ...
array

SELECT each(mykvpfield) FROM ...
als einzelne set

SELECT (each(h)).key, (each(h)).value INTO stat FROM
testhstore;

SELECT mykvpfield->'name' FROM ...
name' as text

WHERE mykvpfield @> 'tourism=>zoo'; -- or hstore('
tourism', 'zoo') - Vergleicht zwei hstore ob left is

--Alle Keys in einem

--Alle Key-Value-Pairs

--Get Value of Key '

contained in right
hstore_to_array(tags)

7 JSON

JSON ist text in Db, also immer reparsen. JSONB ist gepartes Bi
format. Input lansamer, schneller Index.

"[{"a": "£00"}, {"b": "bar"}, {"c": "baz"}] ' 1 : json->2 ergibt
{"c":"baz"} start bei O, negativ von Ende. Also json

json->>'b' ergibt 2 als text

» 2}'::jsonb @ '{"b":2}'::jsonb Does the
left JSON value contain the right JSON path/value
entries at the top level?

'{"a":1, "b":2}'::jsonb ? 'b' - Does the string exist as
a top-level key within the JSON value?

{"a": {"b":{"c": "foo"}}}'::json#>'{a,b}' Get JSON
object at specified path = {"c": "foo"} oder mit #>> as
text

to_json(anyelement) to_json('Fred said "Hi."'::text)

to_jsonb(anyelement) to_jsonb('Fred said "Hi."'::text)

row_to_json(record [, pretty_booll)
jsonb_each(jsonb) - select * from json_each('{"a":"foo",
"b":"bar"}') ergibt spalte key, value

"{"a": {"b":"foo"}}'
key 'a' = {"b":"foo"}

{"a" json->>'b' --gets text by key 'b' = 2
{"a":1, jsonb @ '{"b":2}'::jsonb --Does the
left JSON value contain the right JSON path/value
entries at the top level?

'{"a":1, "b":2}'::jsonb ? 'b' --true or false - check
string exist as a top-level key within column?

json->'a' --gets json object by

"["a", "b"]'::jsomb || '["c", "d"]'::jsomb --concat two
jsonb value

'{"a": "b"}'::jsonb - 'a' --Delete key/value pair or
string

where angwithproj->>'persnr' = 1001::text;
where (angwithproj->>'name') like 'Marxer?'
where angwithproj->'projects' @ to_jsonb('Uranus'::text

)

from angprojj, jsonb_array_elements_text (angwithproj->'
projects');

cross join lateral jsonb_array_elements_text(angwithproj
->'projects');

select

jsonb_build_object (

'persnr', ang.persnr,

'name', min(ang.name),

'projects', jsonb_agg(trim(proj.bezeichnung))

) as objects

from angestellter ang

left outer join projektzuteilung pz on ang.persnr=pz.
persnr

left outer join projekt proj on pz.projar=proj.projnr
group by ang.persnr

order by ang.persnr;

ergibt {"name": "Marxer, Markus", "persnr": 1001, "
projects": ["Mars", "Uranus", "Jupiter"]} wie unten

select jsonb_pretty(jsonb_agg(tmp))
from (
select
ang.persnr as persnr,
min(ang.name) as name,
jsonb_agg(trim(proj.bezeichnung)) as projects
from angestellter ang
left outer join projektzuteilung pz on ang.persnr=pz.
persnr
left outer join projekt proj on pz.projnr=proj.projnr
group by ang.persnr
order by ang.persnr
) tmp;

--Fiigen Sie ein outer-level Tag ,"carrier_hub mit dem
Wert ,"Swiss (in einem Array, damit weitere
Fluggesellschaften hinzugefiigt werden kénnen.

UPDATE airports

SET airport = airport || '{"carrier_hub": ["Swiss"]}'
MUSTERLUSUNG

WHERE airport ->> 'ident' IN (

'LSZH', -- Zirich Airport

'KMDW', -- Chicago Midway

'KLAS', -- Las Vegas

'KDAL'); -- Love Field, Dallas;

--Fiigen Sie dem Flughafen Ziirich Edelweiss zu
carrier_hub hinzu (jsonb_set).

UPDATE airports

SET airport = JSONB_SET(

airport,

'{carrier_hub}',

(SELECT (airport -> 'carrier_hub') || TO_JSONB('
Edelweiss': :TEXT)

FROM airports WHERE airport ->> 'ident' = 'LSZH'),
false)

WHERE airport ->> 'ident' = 'LSZH';

—-ergibt ["Swiss", "Edelweiss"

--entfernt ...wikipedia vom airport

UPDATE airports

SET airport = (airport - 'airport_wikipedia' - '

region_wikipedia') ;

8 XML

Postgresql kann nur XPATH, Oracle, MS Server auch XQuery. XQuery
ist XPATH + SQL-Like Syntax Fiir joins, wie for, let, where, order by,
return.

XNODE (XMLPARSE (DOCUMENT ‘<unit>value </unit >"));
XMLPARSE (DOCUMENT ' <unit>value </unit >'));
XPATH (' fn:name(/*)

9 Table

TRUNCATE tablel; --1léscht Inhalt von der Table

SET CONSTRAINTS ALL DEFERRED; fiihrt dazu, dass die
Constraints fir die aktuelle Tranmsaktion nicht gepriift
werden.

10 Cursor

Cursor erlaubt den sequentiellen Zugriff auf die einzelnen Tuples
des Result Set. Handle or name for a 'private SQL area’ - an area in
memory inside DB server.

DECLARE

AngRec RECORD;

cursl REFCURSOR; -- unbound

curs2 CURSOR FOR select * from abteilung;

curs3 CURSOR (id integer) for select * from abteilung
vhere abtnr = id;

AngCursor CURSOR FOR select * from b FOR UPDATE;

id int := 1;

rowvar abteilunglrowtyp;

name text;

BEGIN

-~ open

open cursl for execute 'select * from abteilung where
abtnr = $1' using id;

OPEN cursi FOR select * from angestellter ang where ang.
AbtNr = Abteilungsnummer;

open curs2;

open curs3(2);

OPEN AngCursor; /*SQL-Abfrage starten und Resultat in
Puffer speichern*/

LOOP /*Iteration ueber Resulatmengex/

FETCH AngCursor INTO AngSalaer, AngPersNr;

--oder FETCH AngCursor INTO AngRec

EXIT WHEN NOT FOUND;

SalSumme := SalSumme + AngSalaer;
RAISE notice 'Angstellter PersNr:
AngPersNr, AngSalaer;

END LOOP;

% Salaer %',

OPEN AngCursor;

LooP

FETCH AngCursor INTO AngRec; --aktuelles Tupel wird
gesperrt.

EXIT WHEN NOT FOUND;

UPDATE Angestellter SET Salaer = MinSalaer

WHERE CURRENT OF AngCursor;

END LOOP;

CLOSE AngCursor;
CLOSE cursi; close curs2; close curs3;
END;

$$ language plpgsql;

11 Trigger

Fir Implementation von komplexen Konsistenzbedingungen.
Berechnung abgeleiteten Attributen, Logdaten und fiir Updateable
Views.

INSTEAD OF trigger should either return NULL to indicate that it
did not modify any data from the view's underlying base tables, or
it should return the view row that was passed in (the NEW row for
INSERT and UPDATE operations, or the OLD row for DELETE opera-
tions)

A row-level trigger fired before an operation has the following
choices: it can return NULL to skip the operation for the current row.
For row-level INSERT and UPDATE triggers only, the returned row
becomes the row that will be inserted or will replace the row being
updated.

The return value is ignored for row-level triggers fired after an op-
eration, and so they can return NULL.

For a row-level trigger, the input data also includes the NEW row for
INSERT and UPDATE triggers, and/or the OLD row for UPDATE and
DELETE triggers.

CREATE TRIGGER mytrigger
{BEFORE | AFTER | INSTEAD OF} {event [OR ...]} --event=
INSERT,UPDATE,DELETE, INSTEAD OF nur fiir Views

FOR EACH {ROW | STATEMENT}

EXECUTE PROCEDURE mytriggerfun();

CREATE OR REPLACE FUNCTION dt_trigger_func()
RETURNS TRIGGER AS $$
BEGIN
--Bei Update oder Delete auch OLD verfuegbar.
IF (TG_OP = 'INSERT') THEN
NEW.creation_date := now();
ELSIF (TG_OP = 'UPDATE') THEN
NEW.modification_date := now();
END IF;
--INSERT INTO ang_audit SELECT 'U', now(), user, NEW.

name, NEW.salaer;

coalesce (SalaerSumme ,0) + v_salaer --wegen NULL + 1 =
NULL

RETURN NEW; --wenn return null dann nichts eingefiigt.
Bei delete old zuriick.

END

$$ LANGUAGE plpgsql;

12 Updateable View
Eine View ist automatisch aktualisierbar (updatable), wenn...:

Die View hat genau einen Eintrag in der FROM-Klausel,
der eine Tabelle oder eine andere updatable View sein
muss.
- Die View darf keine WITH, DISTINCT, GROUP
BY, HAVING, LIMIT, OFFSET enthalten.
- Die View darf kein UNION, INTERSECT, EXCEPT
enthalten.
- Die SELECT-Liste der View darf keine Aggre-
gation, Window-Funktion oder SET-returning-
Funktion enthalten.
Eine Kolonne ist aktualisierbar, wenn sie eine einfache
Referenz auf eine aktualisierbare Kolonne der darunter-
liegenden Relation ist.
Eine autom. aktualiserbare View kann ein Mix von aktu-
aliserbaren und nicht-aktualisierbaren Kolonnen enthal-
ten.

CREATE OR REPLACE VIEW abtleiterinfo (
abtnr, abtname, abtchef)

AS

SELECT abt.abtnr, abt.name, al.abtchef
FROM abteilung abt

INNER JOIN abtleitung al

ON abt.abtnr=al.abtnr

INNER JOIN angestellter ang

ON ang.persnr=al.abtchef;

SELECT * FROM abtleiterinfo;

CREATE TRIGGER abtleiterinfo_update_abtchef

INSTEAD OF UPDATE ON abtleiterinfo

FOR EACH ROW

EXECUTE PROCEDURE abtleiterinfo_update_abtchef_fn();

13 Materialized Views

Werden zwischengespeichert. Wie normale View. Kann man mit
Trigger, Cron-Job oder manuell refreshen.

CREATE MATERIALIZED VIEW aam AS SELECT * FROM aa WHERE a
<= 5000003
REFRESH MATERIALIZED VIEW aam; --weil nicht aktualisiert

14 Temporare Tabelle

Erzeugt eine Tabelle, die automatisch geléscht wird am Ende der
Transaktion oder der Session.

paths (nodel,node2,path) AS (

SELECT nodel, node2, ARRAY[node1] AS "path"

FROM graph_cte bl

WHERE bl.nodel = 2 --<<< Start Node >>>

UNION ALL

SELECT b2.nodel,b2.node2,p.path || b2.nodet

FROM graph_cte b2

JOIN paths p ON (p.node2 = b2.nodel AND b2.nodel <> ALL

(p.path[2:array_upper(p.path,1)]) /* Prevent

retracing*/)

SELECT path || node2 AS "path"

FROM paths

WHERE node2 = 6 --<<< End node >>>
--AND ARRAY[2,3] <@ path -- <<< via...
is contained by'

ORDER BY array_length(path,1), path;

>>> - <@ means '

WITH RECURSIVE subordinates AS (

SELECT employee_id, manager_id, full_name

FROM employees

WHERE employee_id = 2

UNION

SELECT e.employee_id, e.manager_id, e.full_name
FROM employees e

INNER JOIN subordinates s ON s.employee_id = e.
manager_id

) SELECT * FROM subordinates;

3 Arten von Graphen. Adjazenzliste mit Parentld ist schnell mit in-
sert, deletes und updates aber aufwandiger fiir Queries(Nachfolge,
Vorgéanger usw.). Nestetd-Set-Modell mit (ft und rgt wobei ft er-
ste Besuch und rgt zweiter Besuch ist. Aufwandig fir insert, moves,
deletes aber einfach fir queries, da man einfach between 1and 3 (=
a >=x AND a <= y) machen kann. Materialized Path mit 1.1.1 oder
Buchstaben. ltree @> ltree left ein Vorfahre von rechts oder gle-
ich. left <@ right is left a descendant of right (or equal). Wobei jede
ebene mit Punkt getrennt ist.

g 1 B0

Notieren Sie das Resultat der folgenden Query unter der Annahme, dass
die Tabelle ,animals" die Struktur und den Inhalt der Aufgabe Nested Set
enthalt?

WITH p AS (

SELECT Ift, rgt FROM animals where name="Accipitrimorphae’

)

SELECT a.id, a.name
FROM animals a, p —
'WHERE a.|ft BETWEEN p.Ift AND p.rgt-

ORDER BY a.lft; (o] (hesemiot] (i) (1m0me) (i) (o) (s

idr Namext

CREATE TEMPORARY TABLE tmp AS SELECT generate_series
(1,100000) AS a;

15 Zugriffsrechte

View kann man horizontal und vertikal schiitzen. Prozeduren laufen
mit Berechtigung des Erstellers.

GRANT SELECT ON Angestellter_V TO PUBLIC; --alle diirfen
GRANT EXEC ON SalaerErhoehung TO PersonalChef R; --nur
Gruppe PersonalChef

WHERE al.AbtChef = login --Oracle login = username

16 Graph und Tree

WITH cte_name(

CTE_query_definition -- non-recursive ternm
UNION [ALL] --all ist mit duplicates
CTE_query definion -- recursive ternm

) SELECT * FROM cte_name;

WITH RECURSIVE

graph_cte (nodel, node2) AS (

SELECT nodel, node2 from graph

UNION ALL

SELECT node2 AS "nodel", nodel AS "node2" FROM graph
),

17 Interne Ebene

Heap = Collection von Datapages (DP). DP enthalt Rows in un-
sortierter Reihenfolge ca. 8kB gross. B-tree Knoten sind eine Page
gross und enthalten Records. Baum ist selbstbalancierend und
mind. 50% Auslasung mit log(n) Zugriffszeit. Ein Index wird er-
stellt mit: "create index customers_lastname_firstname on cus-
tomers(lastname,firstname);”

Alle Blattknoten sind auf gleicher Hohe. Jeder Knoten hat mind. k
max. 2k Eintrdge (Baum mit Grad k). Alle Knoten mit n Eintrdgen
haben n+1 Kinder. Wenn Split dann mittleres Element eine Ebene
hoher schreiben und falls nicht geht dann da ein Split.

Dichte ist durchschnittlicher prozentualer Anteil von Duplikaten al-
so Anzahl distinct
Anzahl Tupel

Selek! at: Prozentueller Anteil der Tupels in einer Tabelle, die
von einer Query geliefert werden.

Query-Engine parst SQL-Anweisung und wandelt sie in Query-Tree.
Dann allenfalls optimiert. Dann kommt Optimizer und wahlt einen
Execution Plan, basierend auf Statistiken Gber die Datenverteilung.

PG unterstitzt keine clustered indexes.
17.1 Kosten-Modell
* P =Anzahl Data-Pages

R = Anzahl Records per Page

F = Fanout = durchschn. anzahl children in Nonleaf-Node
Pl = Anzahl Pages im Leaf-Level des Index

n = Anzahl Tupels, welche die Gleichheitsbedingung er-
fillen.

Index:

Table/Heap Scan = Scanning aller Pages einer Tabelle.
Wird gemacht, wenn man mehr als 80% der Eintrage
braucht. Scan = P, equality-search = 1/2 P, range search
=P

Clustered Index Scan: scan = P, equality-search
Logp(P) = Log(P)/Log(F) oder Anzahl Kinder ungf.
Anzahl Eintrdge und so dann die Ebenen zdhlen = Anzahl
Suchblécke. Wenn Index Block F Eintrdge ermdglicht
dann mit 2 10 schon F * F (*F fir 3. Ebene) Eintrage.
Wenn Zahl das erste mal grosser als P dann korrekte 10.
range-selektion = log-(P) + aufrunden(n/R) wobei R
= Anzahl Records pro Page ist und F der Fanout
unclustered index: scan = P * R/F+P*R, equality search =
Logg(P+ R),range search = logg (P R) +n+ 7’2_ wobein
die erwarteten gleichen Records sind. Wenn Suche mehr
als 10% Ausbeute, dann Table-Scan mit ev. Sort besser.

Join:

Nested Loop Join ist Anzahl Records von A * Blécke von
B + Blocke von A

Block Nested Loop Join: P(R) + P(S) * % wobei P(R)
Anzahl Pages (logisch optimiert die kleinere P(R)) ist und
B Anzahl Hauptspeicherbldcke (Input-Output-Page 2).
Indexed Nested Loop Join: P(R) + ¢ * P(S) * N(R) wobei
N(R) Anzahl Tupel von R und c Kosten fir Indextraver-
sierung

Hashjoin: 3*(P(R)+P(S)) und wenn Inmemory Platz dann
P(R) + P(S)

Merge-Join: ExternalSort(R) + ExternalSort(S) + P(R)+
P(S). Sort ist 0, wenn Index besteht.

Beim clustered index kann man bei den Blattern wie bei einer linked
list hiipfen. Bei einem Hash-Join hilft der Index auf Join-Condition
nicht, da ganze kleinere Relation in Hashmap geladen werden muss,
jedoch unabh. Spalten z.B. in Where hilft er. Hashjoin kann nur equi-
joins.

Falls kein Index, Hash-Join in der Regel. Falls Index: Index-Nested-
Loop effizienter als Hash-Join, falls Anzahl distincter Werte vom
Index in etwa gleich der Anzahl Rows von S ist. Ist haufig, wegen
Joins auf Foreign-Keys. Wenn Covering-Index, dann Index-Nested-
Loop join schneller. Clustered index scan auch schneller, gibt es aber
in postgresql nicht.

Index auf kleine Tabellen (< 200 Tupels) werden in der Regel nicht
verwendet, wenn die Tabelle in eine Page passt (Index ware dann +1
10).

Logische Optimierung ist algebraische Umformung, sodass mehr
Tupel eleminiert werden vor dem join zum Beispiel. kosten-
basierte Optimierung basiert auf Statistiken, um den optimalen
Ausfiihrungsplan zu finden.

Statistik beinhaltet fir jedes Attribut Anzahl Tuples, Anzahl unter-
schiedlicher Werte, Min und Max und Histogramm.

« Seq Scan: scans the entire relation (table) as stored on
disk

Index Scan: performs a B-tree traversal, walks through
the leaf nodes to find all matching entries, and fetches
the corresponding table data.

Index Only Scan: like Index Scan but no table access be-
cause index has all columns to satisfy the query

Bitmap Index Scan / Bitmap Heap Scan / Recheck Cond

+ Sort

HashAggregate: baut In-Memory Hashtable zum Ag-
gregieren von Tupels
GroupAggregate: aggregiert
sortierten Tuples

basierend auf vor-

17.2 Histogram

« von 1 bis 10 jeweils 10 %, die andere Spalte zeigt den

Max-Key. Wenn key drin, dann nehmen.

Abschatzung Selektivitdt in % ohne Histogramm bei

Wertebereich 0-353 und x < 70 dann = 70/(353 - 0) (* An-

zahl Tupel, falls Resultat gewiinscht)

Bei x > 200 dann (353-200)/353 * Anzahl Tupels

« 237 distincte Werte. Wenn x = 210: Anzahl Tupels der
Tabelle / 237 (Anzahl untersch. Werte).

18 Verteilte DBMS

« Fragmentierung horizontal = Records sind verteilt in ver-
sch. Knoten.

Fragmentierung vertikal = Spalten sind verteilt in versch.
Knoten.

Relation ist die ganze Sicht.

Sharding fihrt zu einer besseren Skalierbarkeit durch
Aufteilung der Records auf ein oder mehrere Nodes
(Shard). Wobei die Aufteilung der Records gleichbedeu-
tend zu horizontaler Fragmentierung ist.

Im Homogene verteiltes DBMS haben allen Knoten
identische Software. Ist fir User wie ein System. Bei
Heterogenen Systemen kénnen untersch. Schema oder
Software aufweisen und haben dann Probleme mit Aus-
fiihrung verteilter Queries (anderes Schema 0.3.) oder
Transaktion(wegen untersch. Software).

Nachteile von Replikation sind die héheren Updatekosten und die
komplexe Synchronisation, dafiir aber schnellere Query oder Daten
direkt vor Ort und héhere Verfiigbarkeit.

Transparenz: Der Benutzer sieht eine globale Sicht, er kennt die
Replikation der Fragmente nicht Queries werden auf der Relation
definiert, nicht auf den Fragmenten. 2. wichtige Eigenschaft auch
Atomaritét von verteilten Transaktionen.

18.1 Zwei-Phasen-Commit

* 1. Prepare to commit: TM fragt alle RM, ob bereit fir
Commit, falls gehen alle RM auf Zustand prepared und
antworten mit READY.

+ 2.Commit. RM antworten mit ACK.

Zustandsiibergang 2PC : Transaction Manager

Buler
= wihtigste Aktion(en)

sendo PREPARE
anallo AM

Timeout oder FAILED. READY von allen Al
empiangen

commit s Log
sende COMMIT

Zustandsiibergang 2PC : Resource Manager

FREPARE emptangen und
okl alles okay:
Log Einlrage ausschraibon

Timeout oder lokaler

Fohler ntcech
abortns Log
sende FAILED

ready ins Log
sondo READY

COMMIT empfangen:
commitins Log
sende ACK

ABORT emplangen:

sende ACK

Bulet’
= wichiigste Aktion(en)

Der TM schreibt Start-Transaktion und End-Transaktion ins Log
sowie auch die Antworten aller RMs. Wenn TM nach Recovery com-
mit oder abort findet, dann abort. Ansonsten dann abort senden.
Bei RM wenn im Ready dann warten (oder Komm. mit anderen RMs)
und abort nach Timeout schicken. Wenn RM in abort oder commit
dann undo bzw. redo.

2PC ist bewahrt aber skaliert eher schlecht, da blockierend. Serial-
isierung von Transaktionen muss global geschehen, da sonst allen-
falls deadlocks.

Query Processing Strategien "Ship-Whole” macht eine grosse mes-
sage und joint es dann auf einem Node. Bei Fetch-as-needed werden
messages pro Tupel geschickt also viele kleine messages.

19 NoSQL

Oft nicht-Relational, schema-frei, einfaches API. Fir grosse Daten-

volumen: Scale out mit Daten-Replikation und Partitonierung
(Sharding), oft als Cloud-Storage.

Key/Value Stores - systems basically support get, put,
and delete operations based on a primary key. No use
if relationship among data. Good for session, shopping-
cart.

Document Stores - systems store structured "docu-
mentsBuch as JSON or XML but have no joins (joins must
be handled within your application). It's very easy to map
data from object-oriented software to these systems.
Graph Stores

Column-Family Stores - systems still use tables but have
no joins (joins must be handled within your application).
Obviously, they store data by column as opposed to
traditional row-oriented databases. This makes aggre-
gations much easier. Select wie bei normalen Daten-
banken.

Object oriented DBMS

In-Memory Column Datenbank MonetDB - A database
that keeps the whole dataset in RAM, Columns are

compressed, each column is mapped onto a file, trans-
action loggin for persistence or snapshot. Select wie
bei normalen Datenbanken. Ist eher fiir Datawarehouse
gemacht, wo nicht viel geschrieben wird.

Es gibt die Replikation Master-Slave (Mongo-Db, asynchron oder
synchron). Master schickt updates zu read-only slaves. Wenn syn-
chron, dann blockierend via 2PC, MongoDb asynchron, wegen
Majority. Wenn asynchron kénnen Update-, Delete-, Ordering-
,Uniqueness-Conflikte entstehen. Master-Master (Cassandra, Peer
to Peer mit Conflict Resolution last write wins).

Strong consistency after an update is committed, each subsequent
access will return the updated value. Weak consistency: the systems
does not guarantee that subsequent accesses will return the updat-
ed value. Eventual Consistency umFfasst Read your writes, Monoton-
ic read, monotonic write.

W+R > N then consistency garantiert. Majority wennw =N =r. Wenn
w = (N+1)/2, dann Partitiontolerant.

Pessimistic Locking is a strategy where you read a record, take
note of a version number (other methods to do this involve dates,
timestamps or checksums/hashes) and check that the version hasn't
changed before you write the record back. When you write the
record back you Filter the update on the version to make sure it's
atomic. (i.e. hasn’t been updated between when you check the ver-
sion and write the record to the disk) and update the version in one
hit. If the record is dirty (i.e. different version to yours) you abort
the transaction and the user can re-start it.

Pessimistic Locking is when you lock the record for your exclusive
use until you have finished with it. It has much better integrity than
optimistic locking but requires you to be careful with your applica-
tion design to avoid Deadlocks.

Was ist eine In-Memory DB und wie passt MonetDB dazu? An in-
memory database is a database that keeps the whole dataset in
RAM. It means that each time you query a database or update data
in a database, you only access the main memory. So, there's no disk
involved into these operations. A good example of such a database
is Memcached.

MonetDB ist keine In-Memory Datenbank im eigentlichen Sinne.
MonetDB verwendet “Memory-Mapped File Arrays” bzw. memory-
mapped Dateien. Wenn MonetDB eine memory-mapped Datei ver-
wendet, kann sie die Daten direkt im Speicher auf der Festplatte
abbilden (Array). Bei einer SQL-Query, wird sie auf eine solche Datei
abgebildet und dann vom Kernel des Betriebssystems in den Spe-
icher geladen. Wenn die Datensétze nicht mehr verwendet werden,
wird ihr Speicherplatz freigeben (virtuelle Speicherverwaltung). In-
memory Datenbanken speichern in der Regel die Daten nicht sofort
zur Disk. Entweder Uber Logging (Live-Betrieb) oder Gber Snapshot
(Datenbank angehalten).

19.1 CAP and BASE
Classic distributed system transactions: focused on ACID semantics

Atomicity - alles oder nichts auf allen Replicas.
Consistency - after each operation all replicas reach the
same state.

Isolation - no operation can see the data from another
operation in an intermediate state.

Durability - once a write has been successful, that write
will persist indefinitely.

Modern Internet system: focused on BASE (Basically Available, Soft-
state (or scalable), Eventually consistent

Es ist nicht mdglich, dass man consistent (all clients same view of
data), availability(every request to a non-failing node must result in
a response) und partition-tolerance (No set of failures less than to-
tal network failure is allowed to cause invalid response) zur gleichen
Zeit erreicht.

Consistent, Available (CA) Systems have trouble with partitions
and typically deal with it with replication. Examples of CA systems
include: Traditional RDBMSs like Postgres, MySQL, etc (relational)

Consistent, Partition-Tolerant (CP) Systems have trouble with
availability while keeping data consistent across partitioned nodes.
Examples of CP systems include: MongoDB (document-oriented),
Redis (key-value), MemcacheDB (key-value), Neo4J (graph)

Available, Partition-Tolerant (AP) Systems achieve éventual con-
sistency”through replication and verification. Examples of AP
systems include: Cassandra (column-oriented/tabular), CouchDB
(document-oriented)

Eventual consistency ist etwa ein Gegenteil von strong consisten-
cy. Dort jeder nachfolgende access wird den updated value liefern.
Eventual Consistency kann man berechnen wann die Daten etwa
wieder konsistent sein sollten wegen Netzwerkdelay, systemload
oder Anzahl Replicas z.B. bei DNS mdglich.

19.2 Neodj

*« MATCH (n:Person)-[:KNOWS]->(m:Person)
n.name = "Alice’

* MATCH (multitalent:Person)-[a:ACTED_IN]->(m:Movie)
WHERE (multitalent)- [:DIRECTED]->(m) RETURN a.roles

« MATCH (audrey:Person {name: Audrey Tautou"})-
[a:ACTED_IN]->(m:Movie) WHERE (audrey)-[:DIRECTED]-
>(m) RETURN a.roles

« CREATE (n)-[r:KNOWS]->(m) : Create a relationship with
the given type and direction; bind a variable to it.

« DELETE n, r: Delete a node and a relationship.

DETACH DELETE n : Delete a node and all relationships

connected to it.

* MATCH p=shortestPath((bacon:Person {name:"Kevin
Bacon"})-[*]-(meg:Person{name:"Meg Ryan"})) RETURN

WHERE

p
« MATCH (bacon:Person {name:"Kevin Bacon"})-[*1..4]-
(hollywood) RETURN DISTINCT hollywood
mit 1 bis 4 Hipfern.

RETURN * Return the value of all variables.

[MATCH WHERE] [OPTIONAL MATCH WHERE] [WITH [OR-
DER BY] [SKIP] [LIMIT]] (CREATE [UNIQUE] | MERGE)*
[SET|DELETE|REMOVE|FOREACH]* [RETURN [ORDER BY] [SKIP]
[LIMIT]]

193 Mongo-DB

« Table => Collection
* Row =>Document
« rowid=>_id

+ Join => DBRef

Safes data in json or bson. Works with MapReduce und aggregates.

Kennt Range- und Hash-based Sharding, also horizontale Partition-
ierung.

readConcern: level: <"majority”|"local”|"linearizable”>

local is default, instance most recent data. Linearizable waits until
all writes finished, that started before query.

Der Client fiihrt einige Schreiboperationen aus. A kommt zu einem
spateren Zeitpunkt wieder dazu (d.h alle Knoten A, B und C sind
wiederim Netzwerk)? Wie reagiert das System? A wird als Secondary
wieder in den Verbund von B und C aufgenommen. A aktualisiert
sein Oplog und fiihrt die Operationen nach.

Wie kénnen Sie das Majority-Protokoll in MongoDb umsetzten?
Durch setzen des WriteConcerns (standard 1, "majority”"mdglich),
so dass alle Schreiboperationen von einer Majoritdt der Knoten
bestatigt werden missen (sonst wird die Schreiboperation nicht
ausgefihrt)

Welcher Mechanismus verwendet MongoDb Ffiir das Synchro-
nisieren von Replikas. Ist dieser Mechanismus asynchron oder syn-
chron? Oplog keeps an ordered list of write operations that have oc-
curred. MongoDB applies database operations on the primary and
then records the operations on the primary’s oplog. The secondary
members then copy and apply these operations in an asynchronous
process.

var class = {
_id: Objectld ("509980df3"),
course: {code: "Dbs2", title: "Advanced DB"}, -Subdokument

students: ["Peter”, "Manuel”,...], ~Array of Strings

}
var x = Objectld()

MongoDb-Shell: Wenn man den Punkt-Operator verwendet, muss
der key dann auch in "". Also zum Beispiel "Blogpost.stats.visitors” :
{$gte: 3}

« db.unicorns.insert({name: "Aurora”, gender: "f",
weight: 450, loves: ["apple”, "grape”], birthday: new
1SODate('2013-04-15)}

« db.unicorns.remove({})
entfernt alle dokumente

« db.unicorns.find()
zeigt alle an.

« db.employees.findOne({_id:
db.employees.findOne({name:'Moneo’}).manager});
Manueller Join

« db.employees.find({manager:{$in:
[db.employees.findOne({name:'Leto’},
{lid:1})._id]}},{id:0})

Manueller join db.employees.insert({_id: Objectld("1a"),
name: 'Duncan’, manager: Objectld("5c¢")});
Find Manager of Duncan

« db.unicorns.find({gender:"f",loves:"apple"})
fur einfache bedingung (loves kann array sein).

« db.unicorns.find({gender:"f", loves:{$in:["apple”, "car-

rot"TH)

gibt alles zurlick wenn im array apple or carrot ist.

« db.unicorns.find({gender:"f", loves:{ $all:["apple”, "car-
rot"T)

Im Array muss Apple und Carrot sein.

« db.unicorns.find({$Sor:[{vampires: {$exists: false}}, {vam-
pires: {$lte:0}}1})
wenn property vampires nicht existiert oder less than
equals 0 ist.

« db.unicorns.find({gender:"m",
{$gte:600}}, {weight:{$lte:900}}]})
wenn gewicht zwischen 600 und 900 ist.

« db.unicorns.find({gender:"f", $or:[{loves:"apple”},
{loves:"carrot™}]}, {_id:0, name:1, gender:1, dob:1})
or anstelle von in und zusétzlich noch Einschrdnkung
welche Spalten kommen mit:0 und :1

+ db.unicorns.update({name: "Roooooodles"},
{weight: 590}}, {upsert: false})
upsert true macht neues Dokument. Erste {} ist Query,
dann Ersatzdokument. $set definiert update-felder
und $unset : {field:""} l6scht das feld. Falls upsert dann
Dokument aus Query + $set Feldern.

« db.unicorns.update({name: "Roooooodles"}, {$set: {a: 3,
b: 10}});
fligt a und b hinzu.

+ db.unicorns.update({name: "Aurora”}, {$push: {loves:
"sugar}, ..})
push figt array element hinzu.

« db.unicorns.update({name: "Pilot"}, {$inc: {vampires: -
2}}, {upsert:false})

+ db.unicorns.update({name: "Roooooodles"}, {$inc: {vam-
pires: 90, weight: 10}});

« db.unicorns.update({gender:"f", Sor:[{loves:"apple”},
{loves:"carrot™}]}, {$push: {loves:"tomato”}}, {up-
sert:false, multi:true})
mit Multi werden mehrere Dokumente updated. Push
flgt ein Array Element hinzu. Standard ist multi-false.

+ db.scores.find({ results: { $elemMatch: { $gte: 80, $lt: 85
)

Array Element muss alle Bedingungen erfiillen.

$and:[{weight:

{$set:

Fir Operatoren gilt folgendes { <field1>: { <operator1>: <value1> },
...} wobei es diese operatoren gibt:

+ $eq Matches values that are equal to a specified value.

« $gtMatches values that are greater than a specified val-
ue. Mit e am schluss dann equals

+ $in Matches any of the values specified in an array.

« $lt Matches values that are less than a specified value.

« $or Joins query clauses with a logical OR returns all doc-
uments that match the conditions of either clause.

« {$set/$push: { <field1>: <value1>, ...} }

« Sexists Matches documents that have the specified field.

« {<field>: { $elemMatch: { <query1>, <query2>, ..}}} The
elemMatch operator matches documents that contain
an array field with at least one element that matches all
the specified query criteria.

Aggregate Funktionen

+ $match, Matches documents equally funktionieren wie
find. Subdokumentzugriff via .

$project, Felder ausblenden.

+ Slookup, macht ein Join, from ist die andere aggrega-
tion, lokalfield ein Feld der aufr. coll.

Sunwind, macht aus einem Array mehrere doku-
mente/rows

db.address.aggregate([

{$match: {street: "Blumenstrasse 13"}},

{$lookup : {from: "persons”, localField: "_id", foreignField: "ad-
dress”, as: "persons”}},

{$project: {_id: 0, street: 1}}]).pretty();

db.orders.aggregate([

{ $match: { status: "A" }},
{ $group: {_id: "$cust_id"
{$sort: { total:-1}}

D

, total: { $sum: "$amount” } }},

db.collection.aggregate([

{$group: { _id: null, myCount: { $sum: 1}}},
{$project: {_id: 0}}

1

$size gibt Grosse von array zuriick.1
20 Evolutionary DB Design

1. Neue Spalte erstellen, 2. Migrationsskript schreiben. 3. Anderung
der Applikation. 4. Anderungen aller DB-Zugriffe im App, View, SP
und Trigger usw. 5. Andern von Indices. 6. Ubertragung aller An-
derungen mit Versionsverwaltung.

Alle DB-Anderungen sind Migrationen (DB Migrations-Tools

wie z.B. Flyway). Alle DB-Artefakte sind versions-kontrolliert
mit Applikationscode. SW-Entwickler integrieren kontinuier-
lich DB-Anderungen. Eine DB besteht aus Schema und Daten
DB-Refactorings sind automatisiert (DB-Migrations-Tools) Klare
Trennung aller DB-Zugriffe im Applikationscode

21 GraphQL

Samtliche benétigten Daten werden in einem "Roundtrip” geliefert.
Die vom Client definierte Datenstruktur ist deklarativ und typisiert.
der Client definiert die verlangten Daten und nicht der Server. Kein
N+1 Problem. Nicht normiert.

Restful Resultat enthdlt z.T. unnétigerweise alle Objekte und de
Objekte enthalten immer alle Felder. SQL Direkte Abfragen iiber
HTTP(s) nicht gegeben

query alleAngestelltenNamen {
allAngestellters {
nodes {
name

}
}

query alleAngestelltenMitInLuzern {
allAngestellters(filter: {
and: [{
salaer: {greaterThan: "5000"}
A
salaer: {lessThan: "8000"}
1,
wohnort: {equalTo: "Luzern"}
}, orderBy: SALAER_ASC)

{
nodes {
name
salaer
}
}

22 Column Family Store Cassandra

keyspace is like Database, column family like table. consistency set-
ting = QUORUM: majority of the nodes are accessed and the column
with the newest timestamp is returned. consistency setting = ALL:
all nodes will have to respond to reads or writes. consistency setting
= ONE (the default): the data from the first replica is returned even
ifitis stale. consistency setting = QUORUM: the write has to propa-
gate to the majority of the nodes before it is considered successful

Consistent Hashing Algorithm for Partitioning. Gossip protocol is
used for cluster membership discover node state for all nodes in a
cluster (Heartbeat).

Scales linear, because you can add a node and shard consistent hash-
ing some data in cassandra.

On Keyspace you can define replication factor.
Atomicity at the row level. No traditional transaction.

CREATE COLUMNFAMILY Customer (KEY varchar PRIMARY KEY,
name varchar, city varchar, web varchar); INSERT INTO Customer
(KEY,name,city,web) VALUES (‘mfowler’, ‘Martin Fowler’, ‘Boston’,
‘www.martinfowler.com’); SELECT * FROM Customer; SELECT name,
web FROM Customer; SELECT name, web FROM Customer WHERE
city="Boston’;

Not use for ACID, SUM, AVERAGE. Scales on Write so for Event Log-
ging, CMS useful.

23 (bungen
231 01
BankManager | + + | BankCustomer
e Birthdate
o1) 1
0.1 .l N
ki e BankAccount
Street
2ip
City

bank object model diagram
I it

CREATE TABLE BankCustomer (
CustomerId SERIAL NOT NULL PRIMARY KEY,
Name TEXT NOT NULL,
Birthdate DATE,

Customer_AddressId INTEGER);

CREATE TABLE Address(
AddressId SERIAL NOT NULL PRIMARY KEY,
Street TEXT NOT NULL,
Zip INTEGER,
City TEXT NOT NULL);

CREATE TABLE BankAccount (
AccountId SERIAL NOT NULL PRIMARY KEY,
Account_CustomerId INTEGER NOT NULL,
Balance DOUBLE PRECISION NOT NULL,
Currency TEXT NOT NULL DEFAULT 'CHF'

CREATE TABLE BankManager (
ManagerId SERIAL NOT NULL PRIMARY KEY,
Name TEXT NOT NULL,
Manager_AddressId INTEGER

)

CREATE TABLE CustomerManager (
CustomerId INTEGER NOT NULL,
ManagerId INTEGER NOT NULL,
PRIMARY KEY(CustomerId, ManagerId)
);

public enum Currency {
CHF, EUR, USD, JPY, GBP

QEntity
public class Address {
@Id

private long addressid;

@OneToOne (mappedBy="address")
private BankCustomer customer;

@0neToOne (mappedBy="address")
private BankManager manager;

¥

QEntity
public class BankAccount {

oId
QGeneratedValue(strategy = GenerationType.IDENTITY)
private long accountid;

private double balance;

QEnumerated (EnunType . STRING)
private Currency currency;

@OneToOne
@JoinColumn(name="Account_CustomerId")
private BankCustomer customer;

}

CEntity
public class BankCustomer {

eId

QGeneratedValue(strategy = GenerationType.IDENTITY)
private long customerid;

private Date birthdate;
@OneToOne (optional=true)
@JoinColumn (name="Customer_AddressId")

private Address address;

@ManyToMany (mappedBy="customers", fetch=FetchType.EAGER

)
private Collection<BankManager> managers = new
ArrayList<>();

@OneToMany //name bezieht sich auf die Many Seite und
referencedColumnName auf die eigene.
@JoinColumn(name="Account_CustomerId",
referencedColumnName="CustomerId")

private Collection<BankAccount> accounts = new
ArrayList<>();

private String name;

@Override
public boolean equals(Object obj) {
if (!(obj instanceof BankCustomer)) return false;
return ((BankCustomer)obj).customerid == customerid;
}
¥

QEntity
public class BankManager {

e1d
QGeneratedValue (strategy=GenerationType . IDENTITY)
private long managerid;

private String name;

public long getManagerid() {
return managerid;

}

@OneToOne (optional = true)
@JoinColumn(name = "Manager_AddressId")
private Address address;

@ManyToMany
@JoinTable(name = "CustomerManager", joinColumns = {
@JoinColumn(name = "ManagerId") }, inverseJoinColumns
= { @JoinColumn(name = "CustomerId") })

private Collection<BankCustomer> customers = new
ArrayList<>();

public void addCustomer(BankCustomer customer) {
this.customers.add(customer) ;

if (!customer.getManagers() .contains(this)) {
customer.getManagers () .add(this) ;

}

}

public void removeCustomer (BankCustomer customer) {
this.customers.remove (customer) ;

if (customer.getManagers () .contains(this)) {
customer.getManagers () .remove (this) ;

}
¥

public Bank {
public static void openAccount(String name, Date
birthDate) {
EntityManager em = factory.createEntityManager();
try {
em.getTransaction() .begin();
BankCustomer customer = new BankCustomer();
customer .setName (name) ;
customer.setBirthdate(birthDate) ;

BankAccount account = new BankAccount();
account.setBalance(0);

account . setCurrency (Currency.CHF) ;
account . setCustomer (customer) ;

em.persist(account);

customer.getAccounts () .add(account) ;
em.persist(customer) ;

System.out.println("ACTION NEW: "+customer);

em.getTransaction().commit();
} catch (Exception e) {
em.getTransaction() .rollback() ;
System.err.println("Failed to open account with
message [" + e.getMessage() + "1");
} finally {
em.close();
}
¥
public static void transfer(long fromAccountId, long
toAccountId, double amount) {
EntityManager em = factory.createEntityManager();
try {
em.getTransaction() .begin();
BankAccount from = em.find(BankAccount.class,
fromAccountId);
BankAccount to = em.find(BankAccount.class,
toAccountId);
from.setBalance(from.getBalance() - amount);
to.setBalance(to.getBalance() + amount);
System.out.println("ACTION TRANSFER: " + from + " =>
" 4 to+ ", " + amount);
em.getTransaction().commit();
} catch(Exception e) {
em.getTransaction() .rollback() ;
System.err.println("Failed to execute transfer with
message [" + e.getMessage() + "1");
} finally {
em.close();

232 U3

CREATE OR REPLACE FUNCTION public.projektzuteilen(angnr
integer, projektnr integer, arbzeit integer, startzeit
date)

RETURNS integer
LANGUAGE plpgsql
AS $function$

DECLARE
carbzeit int := 0;
BEGIN
IF arbzeit < 10 OR arbzeit > 90 THEN
return -1;
END IF;

IF startzeit IS NULL THEN
startzeit := now();
END IF;

select SUM(zeitanteil) INTO STRICT carbzeit from
projektzuteilung where persnr = angnr;
IF carbzeit + arbzeit > 100 THEN
RETURN -2;
END IF;

IF EXISTS(SELECT 1 FROM projektzuteilung where

persnr = angnr AND projnr = projektnr) THEN
RETURN -3;

END IF;

IF NOT EXISTS(SELECT 1 FROM angestellter where
angnr = persnr) OR NOT EXISTS

(SELECT 1 FROM projekt where projektnr = projnr
) THEN
RETURN -5;
END IF;
BEGIN
INSERT INTO PROJEKTZUTEILUNG (persnr,
projnr, zeitanteil, startzeit)
VALUES (angnr, projektnr, arbzeit,
startzeit);

EXCEPTION
WHEN UNIQUE_VIOLATION THEN RETURN -6;
WHEN FOREIGN_KEY_VIOLATION THEN RETURN -7;

END;
RETURN 0;

END;

$function$

CREATE OR REPLACE FUNCTION getAllFoo()
RETURNS SETOF foo AS $$

DECLARE

r foolrowtype;

BEGIN

FOR r IN SELECT * FROM foo WHERE fooid > O
LOOP

-- do something...

RETURN NEXT r; -- return current row of SELECT
END LOOP;

RETURN;;

END

$$ LANGUAGE 'plpgsql';

233 U4

DO LANGUAGE plpgsql $$

DECLARE

c1 CURSOR IS

SELECT name, persnr, salaer FROM angestellter
ORDER BY salaer DESC;

-- start with highest-paid angestellter
my_name CHAR(20);

my_persnr NUMERIC;

my_salaer NUMERIC(7,2);

BEGIN

OPEN c1;

truncate Top5;

FOR i IN 1..5 LOOP

FETCH c1 INTO my_name, my_persnr, my_salaer;
EXIT WHEN NOT FOUND;

/* in case the number requested is more than the total
number of employees

*/

INSERT INTO top5 VALUES (my_name, my_persnr, my_salaer);
END LOOP;

CLOSE c1;

END;

$$

CREATE SCHEMA angpackage AUTHORIZATION anguser;
CREATE FUNCTION angpackage.Abteil Angestellte(
Abteilungsnummer IN INTEGER)

T holder’rowtype;

BEGIN

FOR r IN SELECT abtnr, SUM(salaer) AS totalsalary FROM
GetEmployees() GROUP BY abtnr

LOOP
RETURN NEXT r;

END LOOP;

RETURN;

END;

$$ LANGUAGE 'plpgsql';

SELECT * FROM DepartmentSalaries();

24 Begriffe

Polyglot Persistence is a fancy term to mean that when storing da-
ta, itis best to use multiple data storage technologies, chosen based
upon the way data is being used by individual applications or com-
ponents of a single application.

Fetch-As-Needed pro Join-Row eine Nachricht mit den Attributen.
Fetch-Whole ganze Tabelle abz. where.

Funktionen iiberladen: Mit SET search_path = angpackage, "$us-
er”, public; kann Funktionen Uberladen. Und so das: CREATE
SCHEMA angpackage AUTHORIZATION anguser; CREATE FUNC-
TION angpackage.AbteilungsA ellte(Abteil ININ-
TEGER)

Heap: filestructure, lists of unordered records <> In-Memory heap!!!
Retrieval inefficient as searching is linear

B+-Index: Diskbasierter B-Baum iber ein Attribut bzw. At-
tributkombination. Jeder Knoten enthélt nur die At- tributwerte.
Blatt-Knoten enthalten die Disk-Referenz auf das gespeicherte
Tupel.

Clustered B+-Index: Wie B+-Index aber Blatt-Knoten enthalten die
Tupel. D.h. die Tupel sind sortiert nach dem Attribut des Index.
Achtung, max. 1 Clustered Index pro Tabelle!

B+ Index basierend auf einem Clustered Index: Da es nur einen
Clustered Index proTabelle geben kann, werden weitere B+-Indexe
auf anderen Attributen definiert. Im Gegensatz zu den B+-Indizes
sind in den Blattknoten die Werte des Clustered Index gespeichert
0 bedingt einen zusétzlichen Zugriff auf den Clustered Index.

Bit-Map-Index Index Update ist teuer. Schnell fiir OR Abfragen. Fiir
kleinen Wertebereich.

Replizierte Verteilung der Daten=>héhere Verfiigbarkeit (ge-
ographische Verteilung, bessere Skalierbarkeit, Anwendungsfalle:
Loadbalancing, Realtime OLAP, geograph. Verteilte System mit
lokaler Teilautonomie

SARG-able Queries: Jede Query wird zuerst analysiert um Suchar-
gumente zu fnden -> Nur Suchargumente kdnnen Indexe benutzen,
Ein Suchargument ist entweder ein exakt Match oder eine Range,
Suchargumente kénnen Listen sein, die mit AND verknipft sind,
Eine Seite des Vergleiches ist Konstante oder aufésbare Variable,
Eine Seite des Vergleichs ist Kolonnenname.

Vertikale Fragmentierung: Spalten werden verteilt. Column-
fFamily-Store wie Cassandra.

Scaling out: Clustering mit Standard-HW
Scaling up: Schnellerer Server

Replikationsarten: Synchron (Eager) vs. Asynchron (Lazy, mit Ver-

DROP FUNCTION IF EXISTS DepartmentSalaries();

DROP TYPE IF EXISTS HOLDER;

CREATE TYPE HOLDER as (abtnr INT, totalsalary NUMERIC
(7,2));

CREATE OR REPLACE FUNCTION DepartmentSalaries()

RETURNS SETOF holder AS $$

DECLARE

mern)

Quorum Consensus: Wie Majority, aber mehrere Votes pro Node
moglich

Replika Sets: Normal 3 Nodes pro Set, 1 Primary Node wird
gewahlt, W nur an Primary/immer nur 1 Primary, Daten werden nach
W repliziert, Load-Balancing fir R

25 Priifungsaufgaben

	OR-Mapper
	Vererbung Single-Table, Joined-Table, Table-Per-Class

	Postgresql Functions
	Funktionen
	Loops/Condition
	Array
	Dictionary(hstore)
	JSON
	XML
	Table
	Cursor
	Trigger
	Updateable View
	Materialized Views
	Temporäre Tabelle
	Zugriffsrechte
	Graph und Tree
	Interne Ebene
	Kosten-Modell
	Histogram

	Verteilte DBMS
	Zwei-Phasen-Commit

	NoSQL
	CAP and BASE
	Neo4j
	Mongo-DB

	Evolutionary DB Design
	GraphQL
	Column Family Store Cassandra
	Übungen
	Ü1
	Ü3
	Ü4

	Begriffe
	Prüfungsaufgaben

