
1 Concurrent Klassen
ConcurrentLinkedQueue<E> mit .add(), .remove(),
.addFirst(e), .removeFirst(), .getFirst() sowie je-
weils mit ...Last()
ConcurrentHashMap<K,V> mit .put(), .get(), .entrySet(),
.values()
List<String> list = new ArrayList<String>();
List<String> l = Collections.synchronizedList(list);
auch ...Collection ...Set

2 Threads
Für den Start des Threadsmuss dieMethode start() aufgerufen wer-
den. Ein Aufruf von run() würde blockieren.

new Thread(() -> {
try { function(); }
catch (InterruptedException e) {errFun(); } });

public class SimpleThread extends Thread {
@Override
public void run() { function(); }}

new SimpleThread('.', 10).start();

public class RThread implements Runnable {
@Override
public void run() { function(); }

}
new Thread(new RunnableThread('.', 10));

Eine vierte Möglichkeit wäre eine anonyme innere Klasse.

t.setDaemon (true); verhindern das Beenden des Programms
NICHT. Der Garbage Collector ist ein solcher Thread.

3 Synchronisationsprimitiven
3.1 Monitor
Die Synchronisierung mittels synchronized ist reentrant.

public class MyClass {
public synchronized void one() { dangerous_things(); }
public synchronized void two() { dangerous_things(); }
public void partlySync() {
non_dangerous_things();
synchronized(this) { dangerous_things(); }

}
public synchronized void put(int amount)
throws InterruptedException {
while (stock + amount > capacity) { wait(); }
stock += amount; notifyAll();

}
}

Mit wait(long timeout) kann man auch nach einem Timer auto-
matisch geweckt werden.

private object syncObject = new object();
lock(syncObject) {

while (amount > balance) { Monitor.Wait(syncObject); }
balance -= amount;

}

3.2 Semaphoren
Semaphore sind Marken und können auch negativ initialisiert werden.
Falls keine Marke frei ist (<=0), blockiert acquire().

public class Warehouse {
private final Semaphore upperLimit(cap, fair);
private final Semaphore lowerLimit(0, fair);

@Override
public void put(int amount)
throws InterruptedException {
upperLimit.acquire(amount);
lowerLimit.release(amount);

}
}

3.3 Locks & Conditions
Wichtig: bei await() wird der Lock zwischenzei-
tig abgegeben. Er muss auch wieder erlangt wer-
den. Es gibt auch ReentrantReadWriteLock() mit
rwl.readLock().unlock(), rwl.writeLock().lock()
und rwl.writeLock().newCondition()
public class Warehouse {

private final Lock monitor;
private final Condition nonFull, nonEmpty;
private final int capacity, stock;

public Warehouse(int capacity, boolean fair) {
monitor = new ReentrantLock(fair);
nonFull = monitor.newCondition();
nonEmpty = monitor.newCondition();
this.capacity = capacity;

}

@Override
public void put(int amount)
throws InterruptedException {

monitor.lock();
while (stock + amount > capacity){nonFull.await();}
stock += amount; nonEmpty.signalAll();
monitor.unlock();

}
}

3.4 CountDownLatch
”Einweg-Synchronisationspunkt”. Kann nicht wiederverwendetwerden.

public class RaceControl {
CountDownLatch carsReady =

new CountDownLatch(NOF_RACE_CARS);
CountDownLatch startSignal =

new CountDownLatch(1);

protected void waitForAllToBeReady()
throws InterruptedException {
carsReady.await();

}

public void readyToStart() {
carsReady.countDown();

}
}

3.5 CyclicBarrier
Die Cyclic Barrier startet automatisch sobald N Threads warten:
CyclicBarrier raceStart = new CyclicBarrier(N);
raceStart.await();
Die Barrier kann auch für mehrere Runden eingesetzt werden. Bei
einer Exeption z.B. InterruptedException, sind alle betroffen.
getParties() ermittelt die Anzahl Teilnahmer der Barriere.

3.6 Exchanger
Ermöglicht es, zwischen zwei Threads Objekte auszutau-
schen. exchange(obj1) wartet, bis der andere Thread auch
exchange(obj2) aufgerufen hat.

Exchanger<Integer> exchanger = new Exchanger<>();
int out = exchanger.exchange(in);

4 Race Conditions, Deadlocks & Starvation
4.1 Race Conditions
Data Races treten auf wenn unsynchronisiert read/write auf den glei-
chen Speicher (Variable, Array-Element, ...). Race-Conditions treten auf,
wenn die Critical Sections nicht ausreichend geschützt sind. Collec-
tions ausjava.util nicht threadsafe. Auf Synchronisierung kann ver-
zichtet werden, wenn entweder Unveränderlichkeit (z.B. Java final)
oder veränderliche Objekte in Objekte eingesperrt sind (Object ConƼne-
ment).

4.2 Deadlocks
treten unter folgenden Bedingungen auf: wenn geschachtelte Locks, zy-
klische Warteabhängigkeiten, gegenseitiger Ausschluss und kein Time-
out gemeinsam vorkommen.
Sie lassen sich durch Einführung einer linearen Sperrordnung oder grob-
granulare Sperrung lösen.
Live-Locks sind Deadlocks, bei denen permanent CPU verbraucht wird.

4.3 Starvation
tritt auf, wenn einem Thread immer wieder die Möglichkeit zu arbeiten
weggeschnappt wird. Dies lässt sich durch faire Synchronisationspri-
mitiven lösen.

5 Thread Pools
besitzen eine Task Queue, in welche Tasks eingereiht werden; von dort
werden sie dann von einem Worker Thread herausgenommen und
bearbeitet. Worker Threads sind Daemon-Threads. Seit Java 7/8 gibt
es den ForkJoinPool. Beim Beenden des Programms werden die
Worker-Threads einfach terminiert, weil sie Deamon-Threads sind.

ForkJoinPool tp = new ForkJoinPool();
ForkJoinTask<?> l = tp.submit(() -> count(lPart));
ForkJoinTask<?> r = tp.submit(() -> count(rPart));
int result = l.join() + r.join();

5.1 Recursive Action
public class ParAction extends RecursiveAction {

@Override
protected void compute() {

ParAction left = new ParAction(array,
l, (l + r) / 2);
ParAction right = new ParAction(array,
(l + r) / 2, r);
invokeAll(left, right); // ist fork() und join()

}
}
class CountTask extends RecursiveTask<Integer> {

protected Integer compute() {
CountTask left = new CountTask(leftPart);
CountTask right = new CountTask(rightPart);
left.fork(); right.fork();

return right.join() + left.join();
}

}

pool.invoke(new MergeSortTask(array, 0, array.length));
// oder
new MergeSortTask(array, 0, array.length).invoke();

Man kann auch den Pool auswählen. Entweder einen eigenen ForkJoin-
Pool, oder den Common Pool. Diesen teilt man mit dem Rest der JVM,
er wird noch nicht empfohlen. Direkt auf dem Common Pool starten:
new CountTask(args).invoke();

5.2 Work Stealing
Der Pool hat eine globale Task Queue, die Worker Threads eine lokale
Queue damit sie nicht nach jedemTask die globale sperrenmüssen, um
neue zu holen. Wenn ein Worker Thread seine Queue abgearbeitet hat,
und er keine mehr in der globalen Ƽndet, kann er auch Tasks aus der
Queue eines anderen Worker Threads holen.

6 Future
CompletableFutures laufen automatisch auf dem Common Pool.

public CompletableFuture<String> asyncDl(String l) {
//.runAsync ohne Rückgabewert also
//CompletableFuture<Void>
return CompletableFuture.supplyAsync(
() -> downloadUrl(l));

}

CompletableFuture<String> download =
downloader.asyncDownloadUrl(link);
download.thenAccept(

result -> System.out.println(result));
System.out.println(download.get());

CompletableFuture<String> f = CompletableFuture
.supplyAsync(()-> "3")
.thenApply((String e) -> "abc");

thenApply((x) -> {}) für Funktion mit Rückgabe (Com-
pletableFuture<T> nachher), thenAccept((x) -> {}) für
Handler ohne Rückgabe (CompletableFuture<Void> nach-
her) (typischerweise am Ende). thenRun(() -> {}) ohne
Argument..allOf(fut1, fut2).thenAccept(...) wenn
alle fertig sind, .anyOf(fut1, fut2).thenAccept(...)
wenn einer davon fertig ist. Ein leerer future ist
CompletableFuture.runAsync(() -> {}). Mit all.join()
bekommt man null oder ein Resultat.

7 .NET und TPL
7.1 TPL (Task Parallel Library)
ist einWork Stealing Thread Pool. Die TPL erkennt geschachtelte Tasks
automatisch. Die TPL erzeugt selber neue Tasks, wenn sie merkt dass
der Durchsatz sinkt (Hill-Climbing Algorithmus). Somit können Dead-
locks bei Task-Abhängigkeiten verhindert werden (ausserman setzt die
maximale Anzahl mit ThreadPool.SetMaxThreads(n)).

Task<int> task = Task.Run(() => {
return 42;

});
task.Result; // blockiert
// task.Wait ohne <> Rückgabewert

Task.Run(() => {
Task<int> left = Task.Run(

() => Count(leftPart));
Task<int> right = Task.Run(
() => Count(rightPart));

int result = left.Result + right.Result
});
task.Result; // blockiert
// task.Wait ohne <> Rückgabewert

7.2 Einfache Parallelität
Parallel.For(0, array.Length,

i => DoComputation(array[i])
);
IEnumerable<string> left = null, right = null;
Parallel.Invoke(

() => QuickSort(array, left, right),
() => QuickSort(array, left, right)
() => left = Generate(k),

^^I() => right = Generate(nofPairs - k - 1)
);

bookCollection.AsParallel().AsOrdered().
Where(book => book.Title.Contains("Concurrency")).
Select(book => book.ISBN)

//java
bookCollection.parallelStream().unordered().
filter(book -> book.getTitle().contains("Concurrency"))
map(book -> book.getISBN());

List<Task> tasks = new List<Task>();

foreach(string link in links) {
tasks.Add(Task.Run(() => DownloadWebsite(link)));

}
Task.WhenAll(tasks).ContinueWith(

pd => Console.WriteLine("{t} ms")).Wait();

7.3 async/await
erlauben das teil-asynchrone Ausführen von Funktionen. Der Compiler
zerlegt die async-Funktion in zwei Hälften: bis zum ersten await wird
die Funktion vom Caller synchron ausgeführt. Der Rest wird auf einem
TPL-Thread erledigt.
await darf nur in async-Funktionen vorkommen; async-Funktionen
müssen ein await enthalten.
Hinter den Kulissen baut await die nachfolgenden Aufrufe in eine Con-
tinuation. Ist der Aufrufer ein UI-Thread, dann wird die Continuation
auf den UI-Thread dispatched, andernfalls auf einen normalen TPL-
Threads.
Achtung: async/await kann zu einemThreadwechsel innerhalb eines
Funktionsaufrufs führen!

8 Java UI
public ComputerGUI(Computer computer) {

this.computer = computer;
computer.addObserver(this);

}

ForkJoinPool tp = new ForkJoinPool();
startButton.addActionListener(event -> {

tp.submit(() -> {
String r = computer.calc();
SwingUtilities.invokeLater({
() -> resultLabel.setText("Result: " + r));
// kann auch rekursiv nochmal tp.submit(...)
// und auch dort nochmal .invokeLater(...)

})
});
public void update(Observable o, Object arg) {

SwingUtilities.invokeLater(
() -> statusLabel.setText(computer.getStatus()));
//SwingUtilities.invokeAndWait(
// () -> print(...)) für synchroner Aufruf

}

9 Memory Models
9.1 Java
9.1.1 Atomicity
Zugriff auf Variable (Lesen/Schreiben) ist atomar für primitive
Datentypen bis 32 Bit, Objekt referenzen, volatile long und
volatile double.

9.1.2 Visibility
Die Sichtbarkeit ist garantiert bei Locks Release & Acquire, volatile-
Variablen (für while true), final-Variablen nach dem Ende des Kon-
struktors, Thread-Start/Join und Task-Start/Ende.

9.1.3 Ordering
volatile garantiert, dass kein Reordering über einen Zugriff (r/w) auf
diese Variable hinaus statt Ƽndet. DasOrdering vor und nachvolatile
folgt innerhalb des Threads der As-if-Serial Semantik. Das heisst, der
Compiler darf optimieren falls die Semantik innerhalb des Threads
gleich bleibt.
Zwischen Threads ist Ordering nur bei volatile-Variablen und bei
Synchronisationsbefehlen garantiert.volatile-Variablen führen nicht
zu Locking.

9.2 Atomare Operationen in Java
Atomare Operationen garantieren Ordering und Visibility. Bei-
spiele sind getAndSet(newVal), getAndAdd(delta) und
updateAndGet(lambda).
Mit boolean compareAndSet(old, new) kannman atomar auf ei-
nen Wert prüfen, und falls dieser stimmt, einen neuen Wert setzen. Der
Rückgabewert zeigt ob die Ersetzung stattgefunden hat.
Achtung, bei diesem Beispiel kann man in das ABA-Problem laufen.
Idee: berechne etwas mit dem alten Wert, und schreibe das Resultat,
falls sich das Objekt nicht verändert hat.
AtomicInteger bal = new AtomicInteger(0);
bal.addAndGet(amount);
//--
do{

oldBalance = bal.get();
newBalance = oldBalance - amount;
if (amount > oldBalance) {
return false;
}
} while (!bal.compareAndSet(oldBalance, newBalance));

//--
do {

oldV = var.get();
newV = calcChanges(oldV);

} while (!var.compareAndSet(oldV, newV)

Es gibt neben AtomicInteger (-Long, -Boolean, ...) für primitive Typen
auch AtomicReference<T> für Referenzen.

9.3 ABA-Problem
bei unserem Beispiel kann es sein, dass man erst den Wert A liest, sich
dann an die Arbeit macht und schliesslich wieder den Wert A liest und
denkt, es habe sich nichts geändert. In der Zwischenzeit kann aber ein
anderer Thread das Objekt angefasst und B geschrieben haben, was er
dann wieder mit A ersetzt. Davon merken wir nichts, wir können also
mit diesem Test nicht davon ausgehen dass das Objekt nicht verändert
wurde.

9.4 .NET
Unterschied zu Java:

• long und double auch mit volatile NICHT atomar

• Visibility implizit durch Ordering gegeben

• Ordering: volatile ist nur eine Partial Fence

Bei .NET sind also Umordnungen in eine Richtung erlaubt. Will man ei-
nen Full Fence, nutzt man Thread.MemoryBarrier();
Angenommen, wir haben ein volatile int x. Dann ist das folgende
beim Lesen erlaubt:

Und das folgende beim Schreiben

9.5 Interlocked Atomic
Interlocked.Add(ref balance, 1);
Interlocked.Exchange(ref balance, 30);
// CompareExchange: if old_value, change to 20.
while(old_value != Interlocked.CompareExchange(ref
balance, 20, old_value);
Volatile.Read(ref m_flag) //oder .Write wenn variable
//nicht volatile

10 CUDA
10.1 Vokabular
Eine GPU besteht aus mehreren Streaming Multiprocessors (SM). Je-
der SM besteht aus mehreren Streaming Processors (SP).
In CUDA ist eine GPU einGrid, das ausmehrerenBlöcken besteht. Jeder
Block hat mehrere Threads. Threads werden zu je 32 alsWarps zusam-
mengefasst.
SIMD ist die Abkürzung für ”Single Instruction Multiple Data” und ent-
spricht dem Paradigma der Vektorparallelität. GPUs sind gut für SIMD-
Applikationen geeignet, schliesslich führen alle Cores die gleiche In-
struktion auf unterschiedlichen Daten aus.

10.2 CUDA
CUDA ist eine Architektur von Nvidia und arbeitet mit sogenannten Ker-
nels, welche auf der GPU laufen.
Divergenz heisst, dass im selben Warp unterschiedliche Pfade vorhan-
den sind (z.B. if/else). Dies führt zu einem Performance-Problem.

__global__
void VectorAddKernel(float *A, float *B,

float *C, int N) {
int i = blockIdx.x * blockDim.x

+ threadIdx.x
// bounds check
if (i < N) {

C[i] = A[i] + B[i];
}

}

10.3 CUDA Memory Management
es gibt die drei FunktionencudaMalloc,cudaFree undCudaMemCpy.

10.4 Maximale Thread-Zahl
Gegeben:

• max. Threads per Block: 1024

• max. Resident Blocks: 8

• max. Resident Threads: 1536

Wir wollen einen Vektor mit 1500 Elementen parallel bearbeiten.
Ausrechnen, dann nach folgender Priorität auswählen:

1. Alle Threads müssen in SM passen

2. am wenigsten unnütze Threads

3. am meisten Threads per Block

10.5 CUDA-Grundgerüst
Ohne Error Handling!

void CudaVectorAdd(float* A, float* B,
float* C, int N) {
size_t size = N * sizeof(float);
float *d_A, *d_B, *d_C;

cudaMalloc(&d_A, size); // d_B, d_C
cudaMemcpy(d_A, A, size,

cudaMemcpyHostToDevice); // d_B

int blockSize = 512; //max 1024 Threads
//Anzahl Blöcke = gridSize und aufgerundet
int gridSize = (N + blockSize - 1) / blockSize;
VectorAddKernel<<<gridSize,
blockSize>>>(d_A, d_B, d_C, N);

cudaMemcpy(C, d_C, size,
cudaMemcpyDeviceToHost); // nur d_C

cudaFree(d_A); // d_B, d_C
}

10.6 Function Keywords
• __global__ läuft auf Device, Aufruf vom Host
• __device__ läuft auf Device, Aufruf vom Device
• __host__ läuft auf Host, Aufruf vom Host

10.7 Launch ConƼguration
muss dynamisch bestimmt werden und sich am Problem
und den Fähigkeiten des Devices orientieren (ermitteln mit
cudaGetDeviceProperties().
Aus Eƾzienzgründen sollte die Blockgrösse ein Vielfaches von 32 sein.
Grosse Blöcke haben denVorteil, dass die Threads interagieren können.

10.8 Memory Access
im Device Global Memory ist massiv teurer als Zugriff im Shared Me-
mory (__shared__). UmMemory Coalescing (mehrere Ladevorgänge
zu einem zusammenfassen) zu ermöglichen, sollten Speicherzugriffe
möglichst wie folgt aussehen:

data[(Ausdruck ohne threadIdx.x) + threadIdx.x]

Oft kann mit dem Vertauschen von Zeile und Spalte eine Optimierung
erreicht werden.

10.9 Synchronisierung
kann mittels __syncthreads() erreicht werden, was alle Threads in
einem Block zum Synchronisieren zwingt

10.10 Eƾziente Matrix-Multiplikation
Ohne Memory Guards!

__shared__ float Asub[TILE_SIZE][TILE_SIZE];
__shared__ float Bsub[TILE_SIZE][TILE_SIZE];

int tx = threadIdx.x, ty = threadIdx.y;
int col = blockIdx.x * TILE_SIZE + tx;
int row = blockIdx.y * TILE_SIZE + ty;

for (int tile = 0; tile < nofTiles; tile++) {
Asub[ty][tx] = A[row * K
+ tile* TILE_SIZE + tx];

Bsub[ty][tx] = B[(tile * TILE_SIZE
+ ty) * M + col];

__syncthreads();
for (int ksub = 0; ksub < TILE_SIZE; ksub++) {
sum += Asub[ty][ksub] * Bsub[ksub][tx];

}
__syncthreads();

}
C[row * M + col] = sum;

11 Cluster / MPI (Message Passing Interface)
Cluster weisen spezielle Eigenschaften auf. SharedMemory gibt es nur
innerhalb eines Nodes. Sie sind aber mit General Purpose CPUs aus-
gestattet. Sie tauschen Informationen mit Dateien oder über Sockets
aus.
Basiert auf dem Actor- bzw. dem CSP-Modell und ist sehr gut für hete-
rogene Umgebungen geeignet. MPI ist ein Industristandard und ermög-
licht SPMD (Single Program Multiple Data), da jeder Node das gleiche
Programmmit anderen Daten ausführt.
Ein Task kann mittels mpiexec -n 100 Program.exe auf einem
HPC Cluster gestartet werden.

int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank == 0) {
int value = rand(); int to;
for (to = 1; to < size; to++) {
MPI_Send(&value, 1, MPI_INT, to, 0,

MPI_COMM_WORLD);↪→
}
} else {
int value; int source = 0;

MPI_Recv(&value, 1, MPI_INT, source, 0,
MPI_COMM_WORLD,↪→

MPI_STATUS_IGNORE);
printf("%i received by %i", value, rank);
}

MPI_Send(&value, LENGTH, MPI_INT, receiverRank,
tag,↪→

MPI_COMM_WORLD);
MPI_Recv(&value, LENGTH, MPI_INT, senderRank, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Allreduce(&value, &total, LENGTH_per_process,
MPI_INT,↪→

MPI_SUM, MPI_COMM_WORLD) //MPI_MAX, MPI_PROD

• Scatter: einer verteilt die Werte an alle anderen -
MPI_Scatter(&input_array, size, MPI_INT,
&output_value, recv_count, MPI_INT, rootId,
MPI_COMM_WORLD)

• Gather: alle senden verschiedenee Werte an einen -
MPI_Gather(&input_value, count, MPI_INT,
&output_array, recv_count_per_process,
MPI_INT, rootId, MPI_COMM_WORLD)

• MPI_Barrier(MPI_COMM_WORLD) - Warte, dass alle Prozesse
Barriere erreichen

• MPI_Bcast(&input, 1, MPI_INT, rootId,
MPI_COMM_WORLD)

12 Reactive Programming
Asynchrone Datenƽüsse führen dazu, dass automatisch parallelisiert
werden kann, die Verteilbarkeit gut ist und keine Data-Races, Deadlocks
und Starvation auftreten können.

13 Software Transactional Memory (STM)
Nimmt Ideen aus der Datenbankwelt und versucht damit das Problem
des Shared Mutable State ohne Locks und Starvation anzugehen. Es
gibt auch Hardware-Implementationen. Meistens wird Optimistic Con-
currency Control (OCC) (Rollback bei Konƽikt) als Umsetzung verwen-
det. STM kennt dadurch kein Locking, keine Low-Level Data-Races und
keine Deadlocks.
In Java gibt es ScalaSTM, ein deskriptiver Ansatz und somit ein relativ
einfaches Programmiermodell. Die Implementierung ist aber sehr kom-
plex und ”teuer”.

final Ref.View<Integer> balance = STM.newRef(0);
final Ref.View<LocalDate> lastUpdate =

STM.newRef(LocalDate.now());
void withdraw(int amount) {

STM.atomic(() -> {
if (balance.get() < amount) {

STM.retry();
}
balance.set(balance.get() - amount);
lastUpdate.set(LocalDate.now());

});
}

14 Actor Modell
versucht das Problem zu lösen, dass herkömmliche Sprachen nicht für
NebenläuƼgkeit entworfen wurden. Kein Shared-Memory und somit kei-
ne Low-Level Data-Races.

14.1 Active Objects
sind Objekte welche ein Eigenleben führen. Im Actor-Modell gibt es
nicht einen ”Chef”, der den Objekten beƼehlt was sie tun sollen, sondern
die Objekte kommunizieren untereinander.

14.2 Akka
ist eine Scala-unterstützte Implementierung des Actor-Modells. Akka
Actors verfügen über eineMailbox umNachrichten zu empfangen (mit-
tels onReceive im Actor).

public class NumberPrinter extends UntypedActor {
public void onReceive (final Object message) {

if (message instanceof Integer) {
System.out.print(message);

} else {
getSender().tell(msg, getSelf());

}
// weitere Message-Arten (bas. auf Klasse)

}
}
ActorSystem system =

ActorSystem.create("System");
ActorRef printer =

system.actorOf(Props.create(
NumberPrinter.class));

for (int i = 0; i < 100; i++) {
printer.tell(i, ActorRef.noSender());

}

system.shutdown();

14.3 ActorRef
speichert eine Referenz auf eine Instanz eines Actors. Dadurchwird ver-
hindert, dassman direkt auf Variablen undMethoden des Actors zugrei-
fen kann. Falls der Actor neu gestartet werden muss, behält er seine
Adresse. Man kann die ActorRef in Nachrichten verschicken.

14.4 Remoting
wird dadurch vereinfacht dass Nachrichten immuta-
ble sind. Ein Lookup für einen Actor kann mittels
system.actorSelection(urlString) durchgeführt werden. Das
Ergebnis (eine ActorSelection) kann 0-n Aktoren umfassen und zu
einer ActorRef aufgelöst werden.

14.5 Messaging
in Akka ist grundsätzlich asynchron. Es kann jedochmittels Futures syn-
chron auf eine Antwort gewartet werden.
Messages müssen Serializable sein und immutable. Sie dürfen nur
Ƽnal-Felder haben. Sie dürfen nicht über Methoden mit Seiteneffekten
verfügen. Collectionsmüssen in Collections.unmodifiableList
verpackt werden.

Future<Object> result = // immer Object
Patterns.ask(actorRef, msg, timeout);

result.get();

public class Booking {
final String name;
public Booking(String name) {

this.name = name;
}
public String getName() {

return name;
}

}

14.6 Akka Laufzeitsystem
setzt typischerweise auf ForkJoinPools auf, es wird aber aus Eƾzi-
enzgründen nicht ein Thread pro Actor verwendet.
Synchrones Senden und Empfangen von Nachrichten führt zuWarteab-
hängigkeiten, was wiederum zu Deadlocks führen kann. Deshalb wird
von synchroner Kommunikation abgeraten.

14.7 Akka Supervision
bezeichnet das Überwachen von Actors durch andere Actors. Eltern
überwachen per Default ihre Kinder. Bei einer Exception wird der Super-
visor benachrichtigt undmuss entscheidenwie esweiter geht. Resume:
Kind soll weitermachen. Restart: Kind neustarten. Stop: Kind beenden.
Escalate: seinem Supervisor melden, dass er selber nicht weiss wie re-
agieren

14.8 System Shutdown
erfolgt durch das Stoppen der Actors: (alle rekursiv)
Mittels getContext().stop(actorRef) wird einem Actor mitge-
teilt, dass er nach Bearbeitung der aktuellen Message anhalten soll.
Mit actor.tell(PoisonPill.getInstance(), sender) wird
eine Terminierungsnachricht eingereiht, die den Actor stoppt.
Als last measure gibt es noch
actor.tell(Kill.getInstance(), sender) was eine
Supervision-Behandlung auƽöst.

15 Beispiele
15.1 CountDownLatch mit Semaphore
class CountDownLatch {

private int count;
private Semaphore gate = new Semaphore(0);

public CountDownLatch (int count) {
this.count = count;

}
public void countDown() {

gate.release();
}
public void await() {

gate.acquire(count);
gate.release(count);

}
}

15.2 Fukushima-Mailbox
public class Mailbox {

private AtomicReference<Object> item =
new AtomicReference<>();
public void put(Object value) {
while (!item.compareAndSet(null, value)) {

Thread.yield();
}

}
public Object get() {
while (true) {

Object value = item.get();
if (value != null &&
item.compareAndSet(value, null)) {
return value;

}
Thread.yield();

}
}

}

15.3 Multi-Acquire Semaphore
public class Semaphore {

private int counter = 0, waiting = 0;
public synchronized void acquire(int amount)
throws InterruptedException {
waiting++;
try {
while (counter < amount) { wait(); }
counter -= amount;

} finally {
waiting--;

}
}

public synchronized void release(int amount) {
counter += amount;
notifyAll();

}
public synchronized int nofWaitingThreads() {
return waiting;

}
}

15.4 Cyclic Barrier
public class CyclicBarrier {

private final int parties;
private int count = 0;
private Semaphore open, closed, mutex;

public CyclicBarrier(int parties) {
open = new Semaphore(parties);
closed = new Semaphore(0);
mutex = new Semaphore(1);

}

public void await() {
open.acquire();
mutex.acquire();
count++;
if (count == parties) closed.release(parties);
mutex.release();
closed.acquire();
mutex.acquire();
count--;
if (count == 0) open.release(parties);
mutex.release();

}

public synchronized void await()
throws InterruptedException {
entered++;
if (entered == parties) {
exited = 0;
notifyAll();

}
while (entered < parties) { wait(); }
exited++;
if (exited == parties) {
entered = 0;
notifyAll();

}
while (exited < parties) { wait(); }

} }

15.5 Read Write Lock
public class ReadWriteLock {

private int readers;
private Semaphore wlock, mutex;^^I
public ReadWriteLock() {
wlock = new Semaphore(1);
mutex = new Semaphore(1);

}

public void writelock() { wlock.aquire(); }
public void writeunlock() { wlock.release(); }
public void readlock() {
mutex.aquire();^^I^^I
if(readers == 0) { wlock.aquire(); }
++readers; mutex.release();

}
public void readunlock() {
mutex.aquire();
if(readers == 1) { wlock.release(); }
--readers; mutex.release();

} }

15.6 Read-Write Locks
public class UpgradeableReadWriteLock {

private int readers;
private Thread upgradable;
private boolean writer;

public synchronized void readLock()
throws InterruptedException {

while (writer) {
wait();

}
++readers;

}
public synchronized void readUnlock() {

--readers;
notifyAll();

}
public synchronized void upgradeableReadLock()
throws InterruptedException {

while (upgradable != null || writer) {
wait();

}
upgradable = Thread.currentThread();

}
public synchronized void upgradeableReadUnlock() {

upgradable = null;
notifyAll();

}
public synchronized void writeLock()
throws InterruptedException {

while (readers > 0 || writer ||
(upgradable != null &&
upgradable != Thread.currentThread())) {

wait();
}
writer = true;

}
public synchronized void writeUnlock() {

writer = false;
notifyAll();

} }

15.7 Semaphore
public class Semaphore {

private int count;
private ReentrantLock l;
private Condition full;

public Semaphore(int count, boolean fair) {
this.count = count;
l = new ReentrantLock(fair);
full = l.newCondition();

}
public void acquire(int amount)
throws InterruptedException {

l.lock();
while (count < amount) { full.await(); }
count -= amount; l.unlock();

}
public void release(int amount) {

l.lock();
count += amount; full.signalAll();
l.unlock(); }}

15.8 Exchanger
public class Exchanger<T> {
private int entered = 0, exited = 2;
private Object[] items = new Object[2];
public synchronized T exchange(T item)

throws InterruptedException {
while (exited < 2) {
wait();

}
int other = (entered + 1) % 2;
items[entered] = item;
entered++;
if (entered == 2) {
exited = 0;
notifyAll();

}
while (entered < 2) {
wait();

}
T result = (T)items[other];
items[other] = null;
exited++;
if (exited == 2) {
entered = 0;
notifyAll();

}
return result;

}
}

	Concurrent Klassen
	Threads
	Synchronisationsprimitiven
	Monitor
	Semaphoren
	Locks & Conditions
	CountDownLatch
	CyclicBarrier
	Exchanger

	Race Conditions, Deadlocks & Starvation
	Race Conditions
	Deadlocks
	Starvation

	Thread Pools
	Recursive Action
	Work Stealing

	Future
	.NET und TPL
	TPL (Task Parallel Library)
	Einfache Parallelität
	async/await

	Java UI
	Memory Models
	Java
	Atomicity
	Visibility
	Ordering

	Atomare Operationen in Java
	ABA-Problem
	.NET
	Interlocked Atomic

	CUDA
	Vokabular
	CUDA
	CUDA Memory Management
	Maximale Thread-Zahl
	CUDA-Grundgerüst
	Function Keywords
	Launch Configuration
	Memory Access
	Synchronisierung
	Effiziente Matrix-Multiplikation

	Cluster / MPI (Message Passing Interface)
	Reactive Programming
	Software Transactional Memory (STM)
	Actor Modell
	Active Objects
	Akka
	ActorRef
	Remoting
	Messaging
	Akka Laufzeitsystem
	Akka Supervision
	System Shutdown

	Beispiele
	CountDownLatch mit Semaphore
	Fukushima-Mailbox
	Multi-Acquire Semaphore
	Cyclic Barrier
	Read Write Lock
	Read-Write Locks
	Semaphore
	Exchanger

