1 Concurrent Klassen

ConcurrentLinkedQueue<E> mit .add(), .remove(),
.addFirst(e), .removeFirst(), .getFirst() sowie je-
weils mit . . .Last()

ConcurrentHashMap<K,V> mit .put(), .get(), .entrySet(),
.values()

List<String> list =
List<String> 1 =
auch ...Collection ...Set

new ArraylList<String>();
Collections.synchronizedList(list);

2 Threads

Fir den Start des Threads muss die Methode start() aufgerufen wer-
den. Ein Aufruf von run() wiirde blockieren.

new Thread(() -> {
try { function(); }
catch (InterruptedException e) {errFun(); } });
public class SimpleThread extends Thread {
@Override
public void run() { function(); }}
new SimpleThread("' 10).start();
public class RThread implements Runnable {
@Override
public void run() { function(); }

}
new Thread(new RunnableThread('.', 10));
Eine vierte Moglichkeit wére eine anonyme innere Klasse.

t.setDaemon (true); verhindern das Beenden des Programms
NICHT. Der Garbage Collector ist ein solcher Thread.

3 Synchronisationsprimitiven
3.1 Monitor
Die Synchronisierung mittels synchronized ist reentrant.

public class MyClass {
public synchronized void one()
public synchronized void two()
public void partlySync() {
non_dangerous_things();
synchronized(this) { dangerous_things(); }

public synchronized void put(int amount)
throws InterruptedException {
while (stock + amount > capacity) { wait(); }
stock += amount; notifyAll();
}
}

Mit wait(long timeout) kann man auch nach einem Timer auto-
matisch geweckt werden.

private object syncObject =
lock(syncObject) {

new object();

{ dangerous_things();
{ dangerous_things()

@Override

public void put(int amount)

throws InterruptedException {
monitor.lock();
while (stock + amount > capacity){nonFull.await()
stock += amount; nonEmpty.signalAll();
monitor.unlock();

}

}

3.4 CountDownLatch
"Einweg-Synchronisationspunkt”. Kann nicht wiederverwendet werden.
public class RaceControl {
CountDownLatch carsReady =
new CountDownLatch(NOF_RACE_CARS);
CountDownLatch startSignal =
new CountDownLatch(1);

protected void waitForAllToBeReady()
throws InterruptedException {
carsReady.await();

public void readyToStart() {
carsReady.countDown();

}

3.5 CyclicBarrier

Die Cyclic Barrier startet automatisch sobald N Threads warten:
CyclicBarrier raceStart = new CyclicBarrier(N);
raceStart.await();

Die Barrier kann auch fiir mehrere Runden eingesetzt werden. Bei
einer Exeption z.B. InterruptedException, sind alle betroffen.
getParties() ermittelt die Anzahl Teilnahmer der Barriere.

3.6 Exchanger
Ermoglicht es, zwischen zwei Threads Objekte auszutau-

schen. exchange(objl) wartet, bis der andere Thread auch
xchange(obj2) aufgerufen hat.

; Exchanger<Integer> exchanger = new Exchanger<>();

int out = exchanger.exchange(in);

4 Race Conditions, Deadlocks & Starvation

4.1 Race Conditions

Data Races treten auf wenn unsynchronisiert read/write auf den glei-
chen Speicher (Variable, Array-Element, ...). Race-Conditions treten auf,
wenn die Critical Sections nicht ausreichend geschiitzt sind. Collec-
tions aus java. ut il nichtthreadsafe. Auf Synchronisierung kann ver-
zichtet werden, wenn entweder Unveranderlichkeit (z.B. Java final)
oder veranderliche Objekte in Objekte eingesperrt sind (Object Confine-
ment).

4.2 Deadlocks

!relen unter folgenden Bedlngungen auf wenn geschachtelte Locks, zy-
ische Warteabi iger A hluss und kein Time-

while (amount > balance) { Monitor. Walt(syncob]ect),o,}rgememsam vorkommen

balance -= amount;

3.2 Semaphoren
Semaphore sind Marken und kénnen auch negativ initialisiert werden.
Falls keine Marke frei ist (<=0), blockiert acquire().

public class Warehouse {
private final Semaphore upperLimit(cap, fair);
private final Semaphore lowerLimit(0, fair);

@Override

public void put(int amount)
throws InterruptedException {
upperLimit.acquire(amount);
lowerLimit.release(amount);

}
}
3.3 Locks & Conditions
Wichtig: bei await() wird der Lock zwischenzei-
tig abgegeben. Er muss auch wieder erlangt wer-
den. Es gibt auch ReentrantReadWriteLock() mit

rwl.readlock().unlock(), rwl.writeLock().lock()
und rwl.writelLock().newCondition()
public class Warehouse {
private final Lock monitor;
private final Condition nonFull, nonEmpty;
private final int capacity, stock;

public Warehouse(int capacity, boolean fair) {
monitor = new ReentrantLock(fair);
nonFull = monitor.newCondition();
nonEmpty = monitor.newCondition();
this.capacity = capacity;

Sie lassen sich durch Einfiihrung einer linearen Sperrordnung oder grob-
granulare Sperrung losen.
Live-Locks sind Deadlocks, bei denen permanent CPU verbraucht wird.

4.3 Starvation

tritt auf, wenn einem Thread immer wieder die Méglichkeit zu arbeiten
weggeschnappt wird. Dies Idsst sich durch faire Synchronisationspri-
mitiven l6sen.

5 Thread Pools

besitzen eine Task Queue, in welche Tasks eingereiht werden; von dort
werden sie dann von einem Worker Thread herausgenommen und
bearbeitet. Worker Threads sind Daemon-Threads. Seit Java 7/8 gibt
es den ForkJoinPool. Beim Beenden des Programms werden die
Worker-Threads einfach terminiert, weil sie Deamon-Threads sind.

ForkJoinPool tp = new ForkJoinPool();

ForkJoinTask<?> 1 = tp.submit(() -> count(lPart));
ForkJoinTask<?> r = tp.submit(() -> count(rPart));
int result = l.join() + r.join();

5.1 Recursive Action
public class ParAction extends RecursiveAction {
@Ooverride
protected void compute() {
ParAction left = new ParAction(array,
Lo(L+r)/2);
ParAction right =
(L+r)/2,r);
invokeAll(left,

new ParAction(array,
right); // ist fork() und join()
}

class CountTask extends RecursiveTask<Integer> {
protected Integer compute() {
CountTask left = new CountTask(leftPart);
CountTask right = new CountTask(rightPart);
left.fork(); right.fork();

return right.join() + left.join();

}

; Jpool. invoke(new MergeSortTask(array, 0, array.length));

// oder
new MergeSortTask(array, 0, array.length).invoke();

Man kann auch den Pool auswéhlen. Entweder einen eigenen ForkJoin-
Pool, oder den Common Pool. Diesen teilt man mit dem Rest der JVM,
er wird noch nicht empfohlen. Direkt auf dem Common Pool starten:
new CountTask(args).invoke();

5.2 Work Stealing

Der Pool hat eine globale Task Queue, die Worker Threads eine lokale
Queue damit sie nicht nach jedem Task die globale sperren miissen, um
neue zu holen. Wenn ein Worker Thread seine Queue abgearbeitet hat,
und er keine mehr in der globalen findet, kann er auch Tasks aus der
Queue eines anderen Worker Threads holen.

6 Future
CompletableFutures laufen automatisch auf dem Common Pool.

public CompletableFuture<String> asyncDl(String 1) {
//.runAsync ohne Riickgabewert also
//CompletableFuture<Void>
return CompletableFuture.supplyAsync(
() -> downloadUrl(1l));
}

CompletableFuture<String> download =
downloader.asyncDownloadUr1(1link);
download. thenAccept(

result -> System.out.println(result));
System.out.println(download.get());

CompletableFuture<String> f = CompletableFuture
.supplyAsync(()-> "3")
AthenApply((Str'\ng e) -> "abc");

thenApply((x
pIetabIeFuture<T> nachher),

-> {}) fir Funktion mit RUckgabe (Com-
thenAccept((x) -> {}) fur
Handler ohne Riickgabe (CompletabIeFuture<Vold> nach-
her) (typischerweise am Ende). thenRun(() -> {}) ohne

Argument..all0f(futl, fut2).thenAccept(...) wenn

alle fertig sind, .anyOf(futl, fut2).thenAccept(...)
wenn einer davon fertig ist. Ein leerer future st
CompletableFuture.runAsync(() -> {}). Mit alljoin()

bekommt man null oder ein Resultat.

7 .NET und TPL

7.1 TPL (Task Parallel Library)

ist ein Work Stealing Thread Pool. Die TPL erkennt geschachtelte Tasks
automatisch. Die TPL erzeugt selber neue Tasks, wenn sie merkt dass
der Durchsatz sinkt (Hill-Climbing Algorithmus). Somit kénnen Dead-
locks bei Task-Abhangigkeiten verhindert werden (ausser man setzt die
maximale Anzahl mit ThreadPool.SetMaxThreads(n)).

Task<int> task = Task.Run(() => {
return 42;

1)

task.Result; // blockiert

// task.Wait ohne <> Riickgabewert

Task.Run(() => {
Task<int> left = Task.Run(
() => Count(leftPart));
Task<int> right = Task.Run(
() => Count(rightPart));
int result = left.Result + right.Result
1)
task.Result; // blockiert
// task.Wait ohne <> Riickgabewert

7.2 Einfache Parallelitat
Parallel.For(0, array.Length,
i => DoComputation(array[i])

)5

IEnumerable<string> left =

Parallel.Invoke(

=> QuickSort(array, left,
() => QuickSort(array, left,
() => left = Generate(k),

~I() => right = Generate(nofPairs - k - 1)

)5

bookCollection.AsParallel().AsOrdered().
Where(book => book.Title.Contains("Concurrency")).
Select(book => book.ISBN)

null, right = null;

right),
right)

//java
bookCollection.parallelStream().unordered().

filter(book -> book.getTitle().contains("Concurrency"))

map(book -> book.getISBN());

List<Task> tasks = new List<Task>();

foreach(string link in links) {
tasks.Add(Task.Run(() => DownloadWebsite(link)));

}
Task.WhenAll(tasks).ContinueWith(
pd => Console.WriteLine("{t} ms")).Wait();

7.3 async/await

erlauben das teil-asynchrone Ausfiihren von Funktionen. Der Compiler
zerlegt die async-Funktion in zwei Halften: bis zum ersten await wird
die Funktion vom Caller synchron ausgefiihrt. Der Rest wird auf einem
TPL-Thread erledigt.

awatit darf nur in async-Funktionen vorkommen; async-Funktionen
miissen ein await enthalten.

Hinter den Kulissen baut await die nachfolgenden Aufrufe in eine Con-
tinuation. Ist der Aufrufer ein Ul-Thread, dann wird die Continuation
auf den Ul-Thread dispatched, andernfalls auf einen normalen TPL-
Threads.

Achtung: async/await kann zu einem Threadwechsel innerhalb eines
Funktionsaufrufs fihren!

8 Java Ul

public ComputerGUI(Computer computer) {
this.computer = computer;
computer.addObserver(this);

ForkJoinPool tp = new ForkJoinPool();
startButton.addActionListener(event -> {
tp.submit(() -> {
String r = computer.calc();
SwingUtilities. invokeLater({
() -> resultLabel.setText("Result: " + r));
// kann auch rekursiv nochmal tp.submit(...)
// und auch dort nochmal .invokeLater(...)

pul’)h‘.c void update(Observable o, Object arg) {
SwingUtilities. invokelater(

() -> statusLabel.setText(computer.getStatus()));Volatile.Read(ref m_flag) //oder .

//SwingUtilities.invokeAndWait(
// () -> print(...)) fir synchroner Aufruf
}

9 Memory Models
9.1 Java
9.1.1 Atomicity

Zugriff auf Variable (Lesen/Schreiben) ist atomar fiir primitive
Datentypen bis 32 Bit, Objekt referenzen, volatile long und
volatile double.

9.1.2 Visibility

Die Sichtbarkeit ist garantiert bei Locks Release & Acquire, volatile-
Variablen (fiir while true), final-Variablen nach dem Ende des Kon-
struktors, Thread-Start/Join und Task-Start/Ende.

9.1.3 Ordering

volatile garantiert, dass kein Reordering tiber einen Zugriff (r/w) auf
diese Variable hinaus statt findet. Das Ordering vor und nach volatile
folgt innerhalb des Threads der As-if-Serial Semantik. Das heisst, der
Compiler darf optimieren falls die Semantik innerhalb des Threads
gleich bleibt.

Zwischen Threads ist Ordering nur bei volatile-Variablen und bei
Synchronisationsbefehlen garantiert. volatile-Variablen fiihren nicht
zu Locking.

9.2 Atomare Operationen in Java

Atomare Operationen garantieren Ordering und Visibility. Bei-
spiele sind getAndSet(newVal), getAndAdd(delta) und
updateAndGet(lambda).

Mitboolean compareAndSet(old, new)kannman atomar auf ei-
nen Wert priifen, und falls dieser stimmt, einen neuen Wert setzen. Der
Riickgabewert zeigt ob die Ersetzung stattgefunden hat.

Achtung, bei diesem Beispiel kann man in das ABA-Problem laufen.
Idee: berechne etwas mit dem alten Wert, und schreibe das Resultat,
falls sich das Objekt nicht veréndert hat.

AtomicInteger bal = new AtomicInteger(0);
bal.addAndGet(amount);
//--
do{
oldBalance bal.get();
newBalance = oldBalance - amount;
if (amount > oldBalance) {
return false;

}
} while (!bal.compareAndSet(oldBalance,
//--
do {
oldV = var.get();
newV = calcChanges(oldV);
} while (!var.compareAndSet(oldV, newV)

Es gibt neben Atomiclnteger (-Long, -Boolean,
auch AtomicReference<T> fiir Referenzen.

...) fiir primitive Typen

newBalance));

9.3 ABA-Problem

bei unserem Beispiel kann es sein, dass man erst den Wert A liest, sich
dann an die Arbeit macht und schliesslich wieder den Wert A liest und
denkt, es habe sich nichts gedndert. In der Zwischenzeit kann aber ein
anderer Thread das Objekt angefasst und B geschrieben haben, was er
dann wieder mit A ersetzt. Davon merken wir nichts, wir kénnen also
mit diesem Test nicht davon ausgehen dass das Objekt nicht verandert
wurde.

9.4 .NET

Unterschied zu Java:
« long und double auch mit volatile NICHT atomar
- Visibility implizit durch Ordering gegeben
« Ordering: volatile ist nur eine Partial Fence

Bei .NET sind also Umordnungen in eine Richtung erlaubt. Will man ei-
nen Full Fence, nutzt man Thread . MemoryBarrier();

Angenommen, wir haben ein volatile int x.Dannistdas folgende
beim Lesen erlaubt:

C Befor‘e}

After

Und das folgende beim Schreiben

(Before) /
AFter

9.5 Interlocked Atomic

Interlocked.Add(ref balance, 1);
Interlocked.Exchange(ref balance, 30);

// CompareExchange: if old_value, change to 20.
while(old_value != Interlocked.CompareExchange(ref
balance, 20, old_value);

Write wenn variable
//nicht volatile

10 CUDA

10.1 Vokabular

Eine GPU besteht aus mehreren Streaming Multiprocessors (SM). Je-
der SM besteht aus mehreren Streaming Processors (SP).

In CUDA ist eine GPU ein Grid, das aus mehreren Blocken besteht. Jeder
Block hat mehrere Threads. Threads werden zu je 32 als Warps zusam-
mengefasst.

SIMD ist die Abkiirzung fir "Single Instruction Multiple Data” und ent-
spricht dem Paradigma der Vektorparallelitat. GPUs sind gut fir SIMD-
Applikationen geeignet, schliesslich fiihren alle Cores die gleiche In-
struktion auf unterschiedlichen Daten aus.

10.2 CUDA

CUDA ist eine Architektur von Nvidia und arbeitet mit sogenannten Ker-
nels, welche auf der GPU laufen.

Divergenz heisst, dass im selben Warp unterschiedliche Pfade vorhan-
den sind (z.B. if/else). Dies fiihrt zu einem Performance-Problem.

_global__
void VectorAddKernel(ﬂoat *A, float *B,
float *C, int N) {
int 1 = blockIdx.x * blockDim.x
+ threadIdx.x
// bounds check
if (1 <N) {
C[i] = A[1] + B[1];

10.3 CUDA Memory Management
es gibt die drei Funktionen cudaMalloc, cudaFree und CudaMemCpy.
10.4 Maximale Thread-Zahl
Gegeben:
« max. Threads per Block: 1024
+ max. Resident Blocks: 8
+ max. Resident Threads: 1536

Wir wollen einen Vektor mit 1500 Elementen parallel bearbeiten.
Ausrechnen, dann nach folgender Prioritat auswahlen:

1. Alle Threads miissen in SM passen
2. am wenigsten unniitze Threads

3. am meisten Threads per Block

10.5 CUDA-Grundgeriist
Ohne Error Handling!

void CudaVectorAdd(float* A, float* B,
float* C, int N) {
size_t size = N * sizeof(float);
float *d_A, *d_B, *d_C;

cudaMalloc(&d_A, size); // d_ B, d_C
cudaMemcpy(d_A, A, size,
cudaMemcpyHostToDevice); // d B

int blockSize = 512; //max 1024 Threads
//Anzahl Blécke = gridSize und aufgerundet
int gridSize = (N + blockSize - 1) / blockSize;
VectorAddKernel<<<gridSize,

blockSize>>>(d_A, d_B, d_C, N);

cudaMemcpy(C, d_C, size,
cudaMemcpyDeviceToHost); // nur d_C
cudaFree(d_A); // d B, d C
}

10.6 Function Keywords
+ __global__ lauft auf Device, Aufruf vom Host
« __device__ l4uft auf Device, Aufruf vom Device
- __host__ lauft auf Host, Aufruf vom Host

10.7 Launch Configuration

muss dynamisch bestimmt werden und sich am Problem
und den Fahigkeiten des Devices orientieren (ermitteln mit
cudaGetDeviceProperties().

Aus Effizienzgriinden sollte die Blockgrésse ein Vielfaches von 32 sein.
Grosse Blocke haben den Vorteil, dass die Threads interagieren kénnen.

10.8 Memory Access

im Device Global Memory ist massiv teurer als Zugriff im Shared Me-
mory (__shared__). Um Memory Coalescing (mehrere Ladevorgénge
zu einem zusammenfassen) zu ermdglichen, sollten Speicherzugriffe
mdoglichst wie folgt aussehen:

data[(Ausdruck ohne threadIdx.x) + threadIdx.x]

Oft kann mit dem Vertauschen von Zeile und Spalte eine Optimierung
erreicht werden.

10.9 Synchronisierung
kann mittels __syncthreads() erreicht werden, was alle Threads in
einem Block zum Synchronisieren zwingt

10.10 Effiziente Matrix-Multiplikation
Ohne Memory Guards!

__shared__ float Asub[TILE_SIZE][TILE_SIZE];
__shared__ float Bsub[TILE_SIZE][TILE_SIZE];

int tx = threadIdx.x, ty = threadIdx.y;
int col = blockIdx.x * TILE_SIZE + tx;
int row = blockIdx.y * TILE_SIZE + ty;

for (int tile = 0; tile < nofTiles; tile++) {

Asub[ty][tx] = A[row * K
+ tile* TILE_SIZE + tx];

Bsub[ty][tx] = B[(tile * TILE_SIZE
+ ty) * M + coll;

__syncthreads();

for (int ksub = 0; ksub < TILE_SIZE; ksub++) {
sum += Asub[ty][ksub] * Bsub[ksub][tx];

__syncthreads();
Clrow * M + col] = sum;

11 Cluster / MPI (Message Passing Interface)
Cluster weisen spezielle Eigenschaften auf. Shared Memory gibt es nur
innerhalb eines Nodes. Sie sind aber mit General Purpose CPUs aus-
gestattet. Sie tauschen Informationen mit Dateien oder tiber Sockets
aus.

Basiert auf dem Actor- bzw. dem CSP-Modell und ist sehr gut fir hete-
rogene Umgebungen geeignet. MPI ist ein Industristandard und ermég-
licht SPMD (Single Program Multiple Data), da jeder Node das gleiche
Programm mit anderen Daten ausfihrt.

Ein Task kann mittels mpiexec -n 100 Program.exe auf einem
HPC Cluster gestartet werden.

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank == 0) {

int value = rand(); int to;

for (to = 1; to < size; to++) {
MPI_Send(&value, 1, MPI_INT, to, 0,
< MPI_COMM_WORLD);

}
} else {
int value; int source = 0;

MPI_Recv(&value, 1, MPI_INT, source, 0,
< MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

printf("sti received by %i", value, rank);

MPI_Send(&value, LENGTH, MPI_INT, receiverRank,
— tag,

MPI_COMM_WORLD);

MPI_Recv(&value, LENGTH, MPI_INT, senderRank, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Allreduce(&value, &total, LENGTH_per_process,
<s MPI_INT,
MPI_SUM, MPI_COMM_WORLD) //MPI_MAX, MPI_PROD

+ Scatter: einer verteilt die Werte an alle anderen -
MPI_Scatter(&input_array, size, MPI_INT,
&output_value, recv_count, MPI_INT, rootId,
MPI_COMM_WORLD)

Gather: alle senden verschiedenee Werte an einen -
MPI_Gather(&input_value, count, MPI_INT,
&output_array, recv_count_per_process,
MPI_INT, rootId, MPI_COMM_WORLD)
MPI_Barrier(MPI_COMM_WORLD) -Warte, dass alle Prozesse
Barriere erreichen

MPI_Bcast(&input, 1, MPI_INT, rootId,
MPI_COMM_WORLD)

12 Reactive Programming

Asynchrone Datenfliisse fiihren dazu, dass automatisch parallelisiert
werden kann, die Verteilbarkeit gut ist und keine Data-Races, Deadlocks
und Starvation auftreten kénnen.

13 Software Transactional Memory (STM)

Nimmt Ideen aus der Datenbankwelt und versucht damit das Problem
des Shared Mutable State ohne Locks und Starvation anzugehen. Es
gibt auch Hardware-Implementationen. Meistens wird Optimistic Con-
currency Control (OCC) (Rollback bei Konflikt) als Umsetzung verwen-
det. STM kennt dadurch kein Locking, keine Low-Level Data-Races und
keine Deadlocks.

In Java gibt es ScalaSTM, ein deskriptiver Ansatz und somit ein relativ
einfaches Programmiermodell. Die Implementierung ist aber sehr kom-
plex und "teuer”.

final Ref.View<Integer> balance = STM.newRef(0);
final Ref.View<LocalDate> lastUpdate =
STM.newRef(LocalDate.now());
void withdraw(int amount) {
STM.atomic(() -> {
if (balance.get() < amount) {
STM.retry();

balance.set(balance.get() - amount);
lastUpdate.set(LocalDate.now());
b
}

14 Actor Modell

versucht das Problem zu I6sen, dass herkommliche Sprachen nicht fir
Nebenl&ufigkeit entworfen wurden. Kein Shared-Memory und somit kei-
ne Low-Level Data-Races.

14.1 Active Objects

sind Objekte welche ein Eigenleben fiihren. Im Actor-Modell gibt es
nicht einen "Chef”, der den Objekten befiehlt was sie tun sollen, sondern
die Objekte kommunizieren untereinander.

14.2 Akka

ist eine Scala-unterstiitzte Implementierung des Actor-Modells. Akka
Actors verfiigen iiber eine Mailbox um Nachrichten zu empfangen (mit-
tels onReceive im Actor).

public class NumberPrinter extends UntypedActor {
public void onReceive (final Object message) {
if (message instanceof Integer) {
System.out.print(message);
} else {
getSender().tell(msg, getSelf());

// weitere Message-Arten (bas. auf Klasse)
}
}
ActorSystem system =
ActorSystem.create("System");
ActorRef printer =
system.actorOf(Props.create(
NumberPrinter.class));

for (int 1 = 0; 1 < 100; i++) {
printer.tell(i, ActorRef.noSender());

system.shutdown();

14.3 ActorRef

speichert eine Referenz auf eine Instanz eines Actors. Dadurch wird ver-
hindert, dass man direkt auf Variablen und Methoden des Actors zugrei-
fen kann. Falls der Actor neu gestartet werden muss, behélt er seine
Adresse. Man kann die ActorRef in Nachrichten verschicken.

14.4 Remoting

wird dadurch vereinfacht dass Nachrichten immuta-
ble sind. Ein Lookup fir einen Actor kann mittels
system.actorSelection(urlString) durchgefiihrt werden. Das
Ergebnis (eine ActorSelection) kann 0-n Aktoren umfassen und zu
einer ActorRef aufgeldst werden.

14.5 Messaging

in Akka ist grundsatzlich asynchron. Es kann jedoch mittels Futures syn-
chron auf eine Antwort gewartet werden.

Messages miissen Serializable sein und immutable. Sie dirfen nur
final-Felder haben. Sie diirfen nicht iber Methoden mit Seiteneffekten
verfiigen. Collections missenin Collections.unmodifiableList
verpackt werden.

Future<Object> result = // immer Object
Patterns.ask(actorRef, msg, timeout);
result.get();

public class Booking {
final String name;
public Booking(String name) {
this.name = name;

}
public String getName() {
return name;

}

14.6 Akka Laufzeitsystem

setzt typischerweise auf ForkJoinPools auf, es wird aber aus Effizi-
enzgriinden nicht ein Thread pro Actor verwendet.

Synchrones Senden und Empfangen von Nachrichten fiihrt zu Warteab-
héngigkeiten, was wiederum zu Deadlocks fiihren kann. Deshalb wird
von synchroner Kommunikation abgeraten.

14.7 Akka Supervision

bezeichnet das Uberwachen von Actors durch andere Actors. Eltern
tiberwachen per Default ihre Kinder. Bei einer Exception wird der Super-
visor benachrichtigt und muss entscheiden wie es weiter geht. Resume:
Kind soll weitermachen. Restart: Kind neustarten. Stop: Kind beenden.
Escalate: seinem Supervisor melden, dass er selber nicht weiss wie re-
agieren

14.8 System Shutdown

erfolgt durch das Stoppen der Actors: (alle rekursiv)
Mittels getContext().stop(actorRef) wird einem Actor mitge-
teilt, dass er nach Bearbeitung der aktuellen Message anhalten soll.

Mit actor.tell(PoisonPill.getInstance(), sender) wird
eine Terminierungsnachricht eingereiht, die den Actor stoppt.

Als last measure gibt es noch
actor.tell(Kill.getInstance(), sender) was eine
Supervision-Behandlung auflost.

15 Beispiele

15.1 CountDownLatch mit Semaphore
class CountDownLatch {
private int count;
private Semaphore gate = new Semaphore(0);

public CountDownLatch (int count) {
this.count = count;

}
public void countDown() {
gate.release();

}

public void await() {
gate.acquire(count);
gate.release(count);

15.2 Fukushima-Mailbox
public class Mailbox {
private AtomicReference<Object> item =
new AtomicReference<>();
public void put(Object value) {
while (!item.compareAndSet(null, value)) {
Thread.yield();

}
public Object get() {
while (true) {
Object value = item.get();
if (value != null &&
item.compareAndSet(value, null)) {
return value;

>
Thread.yield();

}
}
}

15.3 Multi-Acquire Semaphore
public class Semaphore {
private int counter = 0, waiting = 0;
public synchronized void acquire(int amount)
throws InterruptedException {
waiting++;

while (counter < amount) { wait(); }
counter -= amount;

} finally {
waiting--;

}

public synchronized void release(int amount) {
counter += amount;
notifyAll();

public synchronized int nofWatitingThreads() {
return waiting;

¥

15.4 Cyclic Barrier
public class CyclicBarrier {
private final int parties;
private int count = 0;
private Semaphore open, closed, mutex;

public CyclicBarrier(int parties) {
open = new Semaphore(parties);
closed = new Semaphore(0);
mutex = new Semaphore(1);

public void await() {
open.acquire();
mutex.acquire();
count++;
if (count == parties) closed.release(parties);
mutex.release();
closed.acquire();
mutex.acquire();
count--;
if (count == 0) open.release(parties);
mutex.release();

¥

public synchronized void await()
throws InterruptedException {
entered++;
if (entered == parties) {
exited = 0;
notifyAll();

while (entered < parties) { wait(); }
exited++;
if (exited == parties) {
entered = 0;
notifyAll();

while (exited < parties) { wait(); }
P

15.5 Read Write Lock
public class ReadWriteLock {
private int readers;
private Semaphore wlock, mutex;”"I
public ReadWriteLock() {
wlock = new Semaphore(1);
mutex = new Semaphore(1);

}
public void writelock() { wlock.aquire(); }
public void writeunlock() { wlock.release(); }

public void readlock() {
mutex.aquire(); " II
if(readers == 0) { wlock.aquire(); }
++readers; mutex.release();

public void readunlock() {
mutex.aquire();
if(readers == 1) { wlock.release(); }
--readers; mutex.release();

P

15.6 Read-Write Locks

public class UpgradeableReadWriteLock {
private int readers;
private Thread upgradable;
private boolean writer;

public synchronized void readLock()
throws InterruptedException {
while (writer) {
wait();
}

++readers;

public synchronized void readUnlock() {
--readers;
notifyAll();

public synchronized void upgradeableReadLock()
throws InterruptedException {
while (upgradable != null || writer) {
wait();
}

upgradable = Thread.currentThread();

}

public synchronized void upgradeableReadUnlock() {
upgradable = null;
notifyAll();

public synchronized void writeLock()
throws InterruptedException {
while (readers > 0 || writer ||
(upgradable != null &&
upgradable != Thread.currentThread())) {
wailt();
}

writer = true;

public synchronized void writeUnlock() {
writer = false;
notifyAll();

T}

15.7 Semaphore

public class Semaphore {
private int count;
private ReentrantlLock 1;
private Condition full;

public Semaphore(int count, boolean fair) {
this.count = count;
1 = new ReentrantLock(fair);
full = l.newCondition();

}

public void acquire(int amount)

throws InterruptedException {

1.lock();
while (count < amount) { full.await(); }
count -= amount; l.unlock();

public void release(int amount) {
1.lock();
count += amount; full.signalAll();
l.unlock(); }}

15.8 Exchanger
public class Exchanger<T> {
private int entered = 0, exited = 2;
private Object[] items = new Object[2];
public synchronized T exchange(T item)
throws InterruptedException {
while (exited < 2) {
wait();

int other = (entered + 1) % 2;
items[entered] = item;
entered++;
if (entered == 2) {

exited = 0;

notifyAll();

while (entered < 2) {
wait();

}
T result = (T)items[other];

items[other] = null;

exited++;

if (exited == 2) {
entered = 0;
notifyAll();

return result;

	Concurrent Klassen
	Threads
	Synchronisationsprimitiven
	Monitor
	Semaphoren
	Locks & Conditions
	CountDownLatch
	CyclicBarrier
	Exchanger

	Race Conditions, Deadlocks & Starvation
	Race Conditions
	Deadlocks
	Starvation

	Thread Pools
	Recursive Action
	Work Stealing

	Future
	.NET und TPL
	TPL (Task Parallel Library)
	Einfache Parallelität
	async/await

	Java UI
	Memory Models
	Java
	Atomicity
	Visibility
	Ordering

	Atomare Operationen in Java
	ABA-Problem
	.NET
	Interlocked Atomic

	CUDA
	Vokabular
	CUDA
	CUDA Memory Management
	Maximale Thread-Zahl
	CUDA-Grundgerüst
	Function Keywords
	Launch Configuration
	Memory Access
	Synchronisierung
	Effiziente Matrix-Multiplikation

	Cluster / MPI (Message Passing Interface)
	Reactive Programming
	Software Transactional Memory (STM)
	Actor Modell
	Active Objects
	Akka
	ActorRef
	Remoting
	Messaging
	Akka Laufzeitsystem
	Akka Supervision
	System Shutdown

	Beispiele
	CountDownLatch mit Semaphore
	Fukushima-Mailbox
	Multi-Acquire Semaphore
	Cyclic Barrier
	Read Write Lock
	Read-Write Locks
	Semaphore
	Exchanger

